NEUROBIOLOGY
OF
AGING

ELSEVIER Neurobiology of Aging 31 (2010) 1463-1480

—_—
www.elsevier.com/locate/neuaging

Sex and age differences in atrophic rates:
an ADNI study with n=1368 MRI scans

Xue Hua ?, Derrek P. Hibar ® Suh Lee ?, Arthur W. Toga ?, Clifford R. Jack Jr. °,
Michael W. Weiner 9, Paul M. Thompson **, and the Alzheimer’s Disease
Neuroimaging Initiative

* Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
® Department of Radiology, Mayo Clinic, Rochester, MN, USA
¢ Departments of Radiology, Medicine, and Psychiatry, University of California, San Francisco, San Francisco, CA, USA
4 Veterans Affairs Medical Center, San Francisco, CA, USA

Received 10 February 2010; received in revised form 26 April 2010; accepted 27 April 2010

Abstract

We set out to determine factors that influence the rate of brain atrophy in 1-year longitudinal magnetic resonance imaging (MRI) data.
With tensor-based morphometry (TBM), we mapped the 3-dimensional profile of progressive atrophy in 144 subjects with probable
Alzheimer’s disease (AD) (age: 76.5 = 7.4 years), 338 with amnestic mild cognitive impairment (MCI; 76.0 %= 7.2), and 202 healthy
controls (77.0 = 5.1), scanned twice, 1 year apart. Statistical maps revealed significant age and sex differences in atrophic rates. Brain
atrophic rates were about 1%—1.5% faster in women than men. Atrophy was faster in younger than older subjects, most prominently in mild
cognitive impairment, with a 1% increase in the rates of atrophy and 2% in ventricular expansion, for every 10-year decrease in age.
TBM-derived atrophic rates correlated with reduced beta-amyloid and elevated tau levels (n = 363) at baseline, baseline and progressive
deterioration in clinical measures, and increasing numbers of risk alleles for the ApoE4 gene. TBM is a sensitive, high-throughput biomarker
for tracking disease progression in large imaging studies; sub-analyses focusing on women or younger subjects gave improved sample size
requirements for clinical trials.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction aging (MRI), offering an in vivo index of progressive brain
deterioration. AD pathology accumulates up to 2 decades
before overt cognitive decline, and minimally symptomatic
subjects, with mild cognitive impairment (MCI) (Petersen,
2003; Petersen et al., 2001), are a key target in clinical trials
(Grundman et al., 2004). Various imaging measures have
been proposed as biomarkers of the disease, reflecting dif-
ferent aspects of AD pathology. Efforts are underway to
assess their power for diagnosis, predicting future decline,

and sensitivity to the effects of potential disease-modifying

Alzheimer’s disease (AD) is a neurodegenerative disor-
der characterized by pathologic accumulation of misfolded
beta-amyloid (Af3) peptides in the neuropil, and hyperphos-
phorylated tau (p-tau) proteins in neurons (Selkoe, 2004;
Skovronsky et al., 2006). The macroscopic effects of neu-
ronal atrophy, cell death, and myelin impairment are detect-
able on high-resolution structural magnetic resonance im-
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treatments (Frisoni et al., 2009; Jagust et al., 2009; Shaw et
al., 2007).

Longitudinal brain MRI can be used to track disease
progression with high precision and statistical power (Hua
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et al., 2009; Leow et al., 2006). Brain MRI scans can be
analyzed with automated or semi-automated methods to
measure hippocampal atrophy (Chetelat et al., 2008; Jack et
al., 2004; Morra et al., 2009a, 2009b; Schuff et al., 2009;
Thompson, et al., 2004), ventricular enlargement (Car-
michael, et al., 2006; Chou et al., 2008, 2009a, 2009b; Jack
et al., 2003; Nestor et al., 2008; Thompson, et al., 2004), or
whole brain atrophy (Fox et al., 1999, 2000; Sluimer et al.,
2008; Smith, et al., 2002, 2004). The trajectory of brain
atrophy on structural MRI largely mirrors the anatomical
pattern and trajectory of neurofibrillary tangle deposition
(Chetelat et al., 2002; Thompson, et al., 2003; Vemuri et al.,
2008, 2009; Whitwell et al., 2008), correlates with clinical
decline (Evans, et al., 2010; Fox et al., 1999; Hua et al.,
2008b; Jack et al., 2009; Leow et al., 2009; Thompson, et
al., 2004), and predicts future conversion from preclinical to
symptomatic AD (Apostolova et al., 2006; Chetelat et al.,
2008; Hua et al., 2008b; Jack et al., 1999; Misra et al., 2009;
Risacher et al., 2009; Vemuri et al., 2009), suggesting that
MRI measures are useful outcome measures for early diag-
nosis (Chetelat and Baron, 2003) and clinical trials (Frisoni
et al., 2010; Halperin et al., 2009; Hill, 2010; Mueller et al.,
2005b, 2006; Shaw et al., 2007).

As AD progresses slowly, drug trials are usually under-
powered to detect subtle therapeutic effects in a reasonable
time interval, given the high cost of scanning large numbers
of subjects. Several sample “enrichment” strategies have
been proposed to selectively target subjects most likely to
decline based on their genotypes (e.g., ApoE4 carriers,
those with abnormal A precursor protein genes, presenilin
1 and 2) (Saunders et al., 1993; Consensus Report, 1998),
MRI markers of early AD (e.g., hippocampal or entorhinal
atrophy) (Devanand et al., 2007; Du et al., 2001; Frisoni et
al., 1999; Jack et al., 2004; Morra et al., 2009b), or cere-
brospinal fluid (CSF) biomarker profiles (e.g., AfB, tau,
p-tau) (Clark, et al., 2003; de Leon et al., 2006; Hansson et
al., 2006; Ibach et al., 2006), to reduce patient heterogeneity
and improve statistical power in trials (Clark, et al., 2008;
Frank, et al., 2003; Shaw et al., 2007; Thal, et al., 2006; ).
If factors influencing atrophic rates were better understood,
they could be used, in principle, to stratify cohorts into
subgroups of subjects most likely to decline. Sex and age
differences in atrophic rates are still poorly understood:
atrophic rates may be faster in young versus older MCI
subjects (Jack et al., 2008c), and greater atrophy is seen in
early- versus late-onset AD (Frisoni et al., 2007). Women
may have higher risk of developing AD than men (Gao et
al., 1998) and, relative to men, women with AD may suffer
from greater cognitive impairments (Bai, et al., 2009;
Fleisher et al., 2005; Henderson and Buckwalter, 1994;
Moreno-Martinez, et al., 2008), greater functional disability
(Dodge et al., 2003), and more frontal metabolic impair-
ment (Herholz et al., 2002). Even so, MRI evidence of a
“sexual dimorphism” in AD is still lacking. Most of the
studies to date are underpowered, i.e., do not have a large

enough sample size to detect a subtle sex effect on atrophic
rates.

Here we assessed how brain atrophic rates depend on age
and sex, in one of the largest MRI studies to date, in the
hope that adjusting for these factors might enhance the
power to track brain atrophy and factors that influence it.
We related atrophic rates to other AD biomarkers, including
AP, tau, and hyperphosphorylated tau (p-tau) levels in the
CSF. We correlated atrophic rates with well known and
candidate risk genes (ApoE and GRIN2b). We hypothesized
that there would be age and sex differences in atrophy rates,
in a diffuse pattern throughout the brain. We also attempted
to rank the clinical variables in terms of their strength of
association with rates of atrophy. We hypothesized that
atrophic rates might correlate more strongly with cognitive
scores, both at baseline and their rates of decline, than with
changes in CSF biomarkers, which have poorer temporal
reproducibility. We also explored some implications of
these correlations for boosting power in clinical trials.

2. Methods
2.1. Subjects

Baseline and 1-year follow-up brain MRI scans were
downloaded from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) public database (www.loni.ucla.edu/
ADNI/Data) on or before June 1, 2009, and reflect the status
of the database at that point; as data collection is ongoing,
we focused on analyzing all available baseline and 1-year
follow-up scans, together with the associated demographic
information, apolipoprotein E (ApoE) genotypes, CSF bi-
omarker measures (for A, tau, p-tau), and clinical and
cognitive databased information on functional and behav-
ioral assessments. ADNI is a large 5-year study launched in
2004 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and nonprofit organizations, as a
$60 million public-private partnership. The primary goal of
ADNI has been to test whether serial MRI, positron emis-
sion tomography (PET), other biological markers, and clin-
ical and neuropsychological assessments acquired at multi-
ple sites (as in a typical clinical trial), can replicate results
from smaller single site studies measuring the progression
of MCI and early AD. Determination of sensitive and spe-
cific markers of very early AD progression is intended to aid
researchers and clinicians to monitor the effectiveness of
new treatments, and lessen the time and cost of clinical
trials. The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of
California, San Francisco.

We analyzed 1368 brain MRI scans, from 144 probable
AD patients (age at baseline: 76.5 * 7.4 years), 338 indi-
viduals with amnestic mild cognitive impairment (MCI;
76.0 £ 7.2), and 202 healthy elderly controls (CTL; 77.0 =
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5.1), each scanned twice, 1 year apart. ADNI patients are
scanned at other intervals, but here were focused on the
1-year follow-up data, as such an interval is common in
clinical trials, and we wanted to focus on an interval over
which changes would be readily detectable. All AD pa-
tients met NINCDS/ADRDA Alzheimer’s Criteria (pro-
posed in 1984 by the National Institute of Neurological
and Communicative Disorders and Stroke and the Alz-
heimer’s Disease and Related Disorders Association) for
probable AD (McKhann et al., 1984). ADNI inclusion
and exclusion criteria (Mueller et al., 2005a, 2005b), are
detailed online at www.alzheimers.org/clinicaltrials/
fullrec.asp?PrimaryKey=208.

All subjects (n = 684, consisting of 144 AD, 338 MCI,
and 202 control subjects) completed thorough clinical and
cognitive assessments at the time of baseline scan. During
the 1-year follow-up, 660 (122 AD, 336 MCI, and 202
control subjects) completed an additional set of clinical and
cognitive tests. Cognitive tests examined here included the
Alzheimer’s Disease Assessment Scale-cognitive subscale
(ADAS-cog), a 70-point scale designed to measure the se-
verity of cognitive impairment; this is currently the most
widely used cognitive measure in AD trials (Mohs, 1994;
Rosen et al., 1984). It consists of 11 tasks assessing learning
and memory, language production and comprehension, con-
structional and ideational praxis, and orientation. The Mini
Mental State Examination (MMSE) provides a global mea-
sure of mental status, evaluating 5 cognitive domains: ori-
entation, registration, attention and calculation, recall, and
language (Cockrell and Folstein, 1988; Folstein et al.,
1975). The Rey Auditory Verbal Learning Test (AVLT)
evaluates learning and memory functions by assessing the
ability to recall a list of 15 words, both immediately after
each of the 5 learning trials (AVLT-5), and after a 30-
minute delay (AVLT-del) (Rey, 1964). The Logical Mem-
ory (LM) test is a modified version of the episodic memory
assessment from the Wechsler Memory Scale-Revised
(WMS-R; Wechsler, 1987). Subjects were asked to recall a
short story consisted of 25 pieces of information, both
immediately after it was read to the subject (LM-im), and
after a 30 minute delay (LM-del). Functional and behavioral
assessments, analyzed here, included the sum-of-boxes
Clinical Dementia Rating (CDR-SB), ranging from 0-18.
The CDR-SB measures dementia severity by evaluating
patients’ performance in 6 domains: memory, orientation,
judgment and problem solving, community affairs, home
and hobbies, and personal care (Berg, 1988; Hughes et al.,
1982; Morris, 1993). Finally, the Functional Assessment
Questionnaire (FAQ) summarizes the functional activities of
daily living (Pfeffer et al., 1982). Medical histories of cardio-
vascular, endocrine-metabolic, gastrointestinal disorders,
alcohol abuse, drug abuse, and smoking were obtained at
the screening visit from the participant and the study
partner. Complete details of the ADNI assessments are
found in the ADNI Procedures Manual (http://www.adni-

info.org/Scientists/Pdfs/adniproceduresmanuall2.pdf)
and www.adni-info.org.

The study was conducted according to the Good Clinical
Practice guidelines, the Declaration of Helsinki, US 21 CFR
Part 50-Protection of Human Subjects, and Part 56-Institu-
tional Review Boards. Written informed consent was ob-
tained from all participants.

2.2. CSF biomarkers

CSF samples were obtained from a subset of the ADNI
subjects through lumbar puncture, after an overnight fast.
Samples collected at various sites were transferred, on dry
ice, to the ADNI Biomarker Core Laboratory at the Uni-
versity of Pennsylvania Medical Center. Levels of A3 1-42
peptide, total tau, and tau phosphorylated at the threonine
181 (p-tau) were measured in 363 subjects at baseline (83
AD, 173 MCI, and 107 CTL), and in 251 subjects at 1-year
follow-up (50 AD, 122 MCI, and 79 CTL).

2.3. Genotyping

ApoE and genome-wide genotyping were performed on
DNA samples obtained from subjects’ blood. Genomic
DNA samples were analyzed on the Human610-Quad Bead-
Chip (Illumina, Inc, San Diego, California) at the University
of Pennsylvania (see www.adni-info.org for detailed infor-
mation on blood sample collection, DNA preparation, and
single nucleotide polymorphism [SNP] genotyping meth-
ods). We also assessed the effect of a common genetic
variant in the GRIN2b gene, a subunit of the N-methyl-D-
aspartic acid (NMDA)-type glutamate receptor, at SNP rs-
10845840, which we previously found was associated with
bilateral temporal lobe volume in a genome-wide study of
the ADNI data (Stein et al., 2010) using the Plink software
(Purcell et al., 2007). This SNP encodes a polymorphism in
the glutamate receptor, and is over-represented in AD ver-
sus controls and is associated with cognitive decline (Stein
et al., 2010).

2.4. MRI acquisition and image correction

Scans were acquired on 1.5 T magnetic resonance (MR)
scanners at 60 sites across the United States and Canada.
Although different type of scanners (GE, Siemens, or Phil-
ips) and various software platforms were used, a standard-
ized MRI protocol ensured cross-site comparability (Jack et
al., 2008a). A typical 1.5 T MR protocol involved a 3-di-
mensional sagittal MP-RAGE (magnetization prepared
rapid gradient-echo) scan with repetition time (TR): 2400
ms, minimum full echo time (TE), inversion time (TTI): 1000
ms, flip angle: 8°, 24 cm field of view, and a 192 X 192 X
166 acquisition matrix in the x-, y-, and z-dimensions,
yielding a voxel size of 1.25 X 125 X 1.2 mm?, later
reconstructed to 1 mm isotropic voxels.

Image corrections were applied using a processing pipe-
line at the Mayo Clinic, consisting of: (1) correction of
geometrical distortion due to gradient nonlinearity (Jovicich
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et al., 2006), i.e., “grad warp”; (2) “B1-correction” to adjust
for image intensity inhomogeneity due to B1 nonuniformity
(Jack et al., 2008a); (3) “N3” bias field correction for re-
ducing residual intensity inhomogeneity (Sled et al., 1998);
and (4) geometrical scaling to remove scanner- and session-
specific calibration errors using a phantom scan acquired for
each subject (Gunter et al., 2006). All original image files
as well as all corrected images are available at www.
loni.ucla.edu/ADNI/Data.

2.5. Image preprocessing

First, each subject’s follow-up scan was linearly regis-
tered to their baseline scan, with a 9-parameter (9P) trans-
formation driven by a mutual information (MI) cost func-
tion (Collins, et al., 1994), to adjust for linear differences in
position and scale across time. 9P registration can correct
for scanner voxel size variations in large longitudinal stud-
ies involving multiple sites, scanners and acquisition se-
quences (Clarkson et al., 2009), consistently outperforming
6-parameter (6P) registration in terms of statistical power
(Hua et al., 2009; Paling et al., 2004). Second, to account for
global differences in brain scale across subjects, the mutu-
ally aligned scan pairs were then linearly registered to the
International Consortium for Brain Mapping template
(ICBM-53) (Mazziotta et al., 2001), applying the same 9P
transformation to both mutually aligned scans. Globally
aligned images were resampled in an isotropic space of 220
voxels along x-, y- and z-dimensions with a final voxel size
of 1 mm?.

2.6. Tensor-based morphometry (TBM) and 3D maps of
atrophic rates

Individual maps of atrophic rates (also known as “Jaco-
bian maps”) were derived from a TBM analysis of MRI
scans acquired 1 year apart. These maps represent the rates
of tissue shrinkage (or CSF space expansion) at each voxel
location in the brain. A Jacobian map was created by non-
linearly warping the 1-year follow-up scan to match the
baseline scan of the same individual, driven by a mutual
information cost function, and a regularizing term called the
symmetrized  Kullback-Leibler  (sKL-MI) distance
(Yanovsky et al., 2009). Registration parameters (sigma =
6 and lambda = 8) were chosen based on our earlier opti-
mization study (Hua et al., 2009). A color-coded map of the
Jacobian determinants was computed from the gradient of
the deformation field to illustrate regions of volume expan-
sion (i.e., with det J(r) > 1), or contraction (i.e., with J(r) <
1) (Ashburner and Friston, 2003; Chung et al., 2001; Free-
borough and Fox, 1998; Riddle et al., 2004; Thompson, et
al., 2000; Toga, 1999) over the 1-year interval, yielding a
map that estimates tissue change rates. Jacobian maps were
also spatially normalized across subjects by nonlinearly
aligning all individual maps to a minimal deformation tem-
plate (MDT), for regional comparisons and group statistical
analysis. The MDT represented the average shape of 40

healthy elderly controls; the procedure to construct the
MDT is detailed in Hua et al. (2008a, 2008b). Average maps
were computed by taking the mean at each voxel of the
Jacobian maps across subjects.

2.7. Statistical analyses

We performed several statistical analyses to assess fac-
tors influencing or related to brain atrophic rates in Alzhei-
mer’s disease and normal aging. First, general linear regres-
sions were used to investigate the relations between TBM-
derived brain atrophic rates and demographic variables,
CSF biomarkers, clinical and neuropsychological measures,
known risk genes, imminent conversion to AD, and other
risk factors. These correlations were subsequently evaluated
by cumulative distribution functions (CDF) to determine if
they were significant after controlling for multiple compar-
isons using conventional criteria, inside the whole brain or
within the temporal lobes. The CDFs were also used to rank
the strengths of correlations within each category, to find
out which factors are most strongly associated with the rates
of structural brain atrophy. Second, the 3-dimensional map
was reduced to a single numerical score, representing the
overall atrophic rate for each individual within a region of
interest ROI. Third, based on these numerical scores, a
power analysis was used to estimate the patient recruitment
size for a hypothetical clinical trial of a disease-modifying
drug, using structural imaging or other biomarkers as sur-
rogate measures of disease progression.

2.7.1. General linear correlations and cumulative
distribution functions (CDF) computed to assess false
discovery rates (FDRs)

At each voxel within the brain, correlations were as-
sessed, using the general linear model, between atrophy
rates and: (1) demographic variables (age, sex, and educa-
tion); (2) baseline and 1-year changes in CSF biomarker
levels (A, tau, p-tau, and the ratio of tau to AfB); (3)
baseline and 1-year changes in clinical and behavioral mea-
sures: (ADAS-cog, MMSE, AVLT, LM, CDR-SB, and
Functional Assessment Questionnaire [FAQ]); (4) medical
histories of cardiovascular, endocrine-metabolic, and gas-
trointestinal disorders, as well as information on alcohol
abuse, drug abuse, and smoking; (5) body mass index
(BMD); (6) AD risk genes (ApoE4, and a newly discovered
candidate risk gene, GRIN2b; Stein et al., 2010). Correla-
tions were assessed within each diagnostic group indepen-
dently, and in the combined group (of all AD, MCI, and
CTL subjects), where appropriate. Binary categorical (or
indicator) variables were used to code sex (female sex as O;
male as 1), medical histories (no medical history as 0;
present as 1), and conversion to AD (non-converters as 0;
converters as 1). Risk genes were coded as 0, 1, and 2 for 0,
1, and 2 risk alleles, respectively, to represent an additive
model assuming an equal contribution of each risk allele to
brain atrophy. All other covariates were represented as con-
tinuous variables. Multiple regressions allowed the fitting of
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a number of predictor variables simultaneously. We first
examined age and sex effects (independent variables) on
atrophic rates (dependent variables), and age and sex were
fitted as covariates to adjust the rest of the correlations for
these effects.

CDF plots of the regression p values were used to de-
termine the significance and compare the strengths of asso-
ciation (effect sizes) for the various factors that correlated
with atrophic rates, inside a predefined region-of-interest
(e.g., the temporal lobes or whole brain). CDF plots are
commonly used by false discovery rate methods to assign
overall significance values to statistical maps (Benjamini
and Hochberg, 1995; Genovese et al. 2002; Storey, 2002). A
significant correlation is declared if the CDF intersects the
y = 20x line (other than at the origin), i.e., critical p > 0, as
this shows that the volume of suprathreshold statistics is
more than 20 times that expected under null-hypothesis
(Chou et al., 2009b; Hua et al., 2008a, 2009; Morra et al.,
2009b). The critical p value refers to the point at where CDF
plot intersects with the line y = 20x, and this represents the
highest statistical threshold for which at most 5% false
positives are expected in the map. This value is generally
higher for stronger effect sizes in the maps, but is not
defined if no effect is present (i.e., the false discovery rate
in the map cannot be controlled). CDFs may also be used to
compare effect sizes for different clinical correlations: CDF
curves show increasingly strong statistical correlations in
rank order from bottom to top, in each graph.

2.7.2. Numerical summaries of atrophy rates derived
from a statistically-defined region-of-interest

A statistically-defined region of interest (stat-ROI),
based on voxels with significant atrophic rates over time
(p < 0.001) within a predefined anatomical ROI, was es-
tablished in a nonoverlapping training set of 20 AD patients
(age at baseline: 74.8 = 6.3 years; 7 men and 13 women)
scanned at baseline and at 1 year. The anatomical ROIs
included the whole brain gray matter and temporal lobes,
two of the best search regions giving the highest statistical
power in tracking AD progress (Hua et al., 2010). This
procedure is detailed in Chen et al. (2009), Hua et al. (2009,
2010), and Ho et al. (2009). A numerical summary of the
atrophic rate in the whole brain gray matter, or temporal
lobe, was computed by taking the arithmetic mean of Jaco-
bian values within the corresponding stat-ROI (Ho et al.,
2009; Hua et al., 2009, 2010), giving a single rate of atrophy
score for each individual.

2.7.3. Power analysis and sample size estimates

A power analysis was defined by the ADNI Biostatistics
Core to estimate the sample size required to detect, with
80% power, a 25% reduction in the mean annual change, as
captured by imaging, clinical, or CSF biomarker measures,
using a 2-sided test and standard significance level (o =
0.05) for a hypothetical 2-arm study (treatment vs. placebo).
The estimated minimum sample size for each arm was

computed with the formula below. Briefly, 8 denotes the
estimated annual change (average of the group) and op
refers to the standard deviation of the rate of atrophy across
subjects.

~2 2
2'O-D (Zlfa/2 + Zpower)
A\ 2

(0.258)

Here z,, is the value of the standard normal distribution
for which P[Z < z,] = a (Rosner, 1990). The sample size
required to achieve 80% power was computed, denoted by
n80. The 95% confidence interval for the n80 statistic was
computed based on 10,000 bootstrapped resamplings, with a
bias-corrected and accelerated percentile method (Davison
and Hinkley, 1997; Efron and Tibshirani, 1993).

n=

3. Results
3.1. Age and sex effects in atrophy rates

The rates of atrophy (Jacobian values) at each location
inside the brain were tested for correlations with age and sex
in AD, MCI, and CTL groups independently, as well as in
the combined group (ALL). The CDF plots (Fig. 1a and b)
show that age and sex correlate with atrophic rates, espe-
cially in the MCI group, and when all subjects were com-
bined. There was no systematic age difference between the
3 diagnostic groups (mean age was 76.5, 76.0, and 77.0 for
AD, MCI, and CTL respectively), so these effects are driven
by differences in age within the diagnostic groups, not
between them. Comparing CDF curves of the same color —
for the whole brain versus temporal lobes — gives a clear
impression of the power gained by restricting analyses to
regions that are known to change the most. For example, the
black curves show that age and sex effects are detected with
greater effect sizes when focusing on the temporal lobes, as
the CDF curves have a steeper gradient at the origin. They
also cross the reference line y = 20x at a higher point, which
means that a higher threshold (critical p value or C.P.) can
be applied to the statistical maps while keeping the false
discovery rate to 5% of the voxels shown.

The sign of the correlations with age — positive inside
tissues and negative in the CSF — indicates faster brain
degeneration in younger MCI subjects (Fig. 1c), about 1%
increase in atrophic rates and 2% increase in ventricular
expansion rates for every 10-year decrease in age; AD
patients showed a similar but lesser age effect. Healthy
controls showed a small but significant age effect in the
opposite direction: a few voxels in the CSF and at the
boundary of gray matter and CSF showed positive correla-
tions, i.e., younger age is associated with less ventricular
expansion. Atrophic rates were faster in women than men
by about 1%—1.5% per year, signified by positive correla-
tions between the atrophic rates and sex (female sex was
coded arbitrarily as 0; male as 1; Fig. 1d). As expected, the



1468 X. Hua et al. / Neurobiology of Aging 31 (2010) 1463—1480

a. Age effect b. Sex effect
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Observed p-value
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c. Age effect: regression coefficients map

d. Sex effect: regression coefficients map

Fig. 1. Age and sex differences in atrophic rates are shown across the entire brain and also in an analysis restricted to changes within the temporal lobes.
Cumulative distribution function (CDF) plots for the effects on atrophic rates of age (a) and sex (b) show the statistical significance of their correlations with
atrophy rates. Both effects were most prominent in the mild cognitive impairment (MCI) group, probably because it had the most subjects. CDF plots for
the whole brain were reflected in the y axis to avoid clutter. CDF curves that rise more steeply at the origin generally indicate greater effect sizes. Tests for
age and sex effects throughout the whole brain showed inferior statistical power relative to similar tests for effects inside the temporal lobes. This can be
seen by comparing CDF curves of the same color in (a) and (b). Regression coefficient maps are shown for the age (c) and sex (d) effects in MCI across
the entire brain; colors show the signs of the regression coefficients. The map of each effect (age, sex) is adjusted for the effect of the other covariate. Younger
age (| ) is associated with faster tissue loss rates (|, ) and faster ventricular expansion ( 1 ). There is approximately a 1% increase in atrophic rates and 2%
increase in ventricular expansion rates, for every 10-year decrease in age, as shown by positive correlations in the temporal lobes and negative correlations
in the CSF, respectively. Women ( | ) had faster brain degeneration ( | ) by about 1%—1.5% per year relative to men. These correlation coefficient maps show
only the values in regions demonstrating significant correlations, after FDR correction across the entire brain. AD, Alzheimer’s disease; MCI, mild cognitive
impairment; CTL, healthy elderly controls; ALL, all subjects including AD, MCI, and CTL; C.P., critical p value; n.s., not significant.

regression coefficient maps, using thresholds derived within
the temporal lobes or across the entire brain, are generally
consistent in their spatial distributions. However, a broader
area reaches significance if restricting the search region to
the temporal lobes, as the critical p values are higher within
the temporal lobes than those from the whole brain (results
not shown).

When we added education and BMI into this regres-
sion model, they did not show significant correlations in
any group so were not pursued further as confounds. To
better illustrate the age and sex differences in atrophic
rates, the MCI group was divided into 6 subgroups (in

group average maps. The rest of correlations tested in this
paper were all statistically adjusted for these effects of
age and sex.

As a related question, one might also wonder if age and
sex differences were present in the baseline MRI measures.
In fact, there were significant age and sex differences in
baseline temporal lobe atrophy, within each group indepen-
dently and in the combined group.

3.2. Correlations between atrophic rates and clinical
(cognitive/behavioral) measures

age brackets: 60 to <70, 70 to <80, and 80 to <90 years;
further split by sex into female and male). Fig. 2 shows
the age and sex effects in a straightforward fashion, as

Temporal lobe atrophy rates were correlated with base-
line clinical measures (Fig. 3) and with their rates of decline
(Fig. 4). In AD and MCI, atrophic rates were most strongly
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Fig. 2. Average maps of atrophic rates in mild cognitive impairment (MCI) subjects, subdivided by age and sex. Female MCI subjects (top) are divided into
3 age groups, 6070 (n = 24), 70-80 (n = 59), and 80-90 years (n = 37). Male MCI subjects (bottom) are divided into the age groups of 60-70 (n =
33), 70—-80 (n = 102), and 80-90 years (n = 77). Faster atrophic rates occur (darker blue) in younger subjects, and in women versus men; age and sex effects
are clearly visible. A small number of MCI subjects (n = 6) fell outside of these age ranges but were too few to form a separate sample so they are not included

in the maps.

correlated with the ADAS-cog, LM-im, and AVLT-5 scores
at baseline (Fig. 3a and b). Baseline LM-del, AVLT-del,
FAQ, and MMSE also showed significant correlations in
MCI (Fig. 3b). Anatomical changes over time were also
highly correlated with ongoing changes in LM-del, ADAS-
cog, CDR-SB, in AD, and CDR-SB, FAQ, LM-im, ADAS-
cog, LM-del, in MCI (Fig. 4). The rank order — from
highest to lowest effect sizes — is shown for these corre-
lations, with baseline ADAS-cog showing the highest cor-
relations with future atrophic rates. The highest curves show
the covariates that are most strongly correlated with the
measured atrophic rate.

Similar but weaker effect sizes (lower CDF curves and
critical p values) were obtained when expanding the search
region to the entire brain, relative to restricting to the tem-
poral lobes, comparing curves of the same color on each
side of the plot (Figs. 3 and 4). Using the whole brain ROI,
atrophic rates were only significantly correlated with the
ADAS-cog at baseline in AD, and baseline measures of
ADAS-cog, AVLT-5, LM-del, LM-im, and MMSE in MCI
(Fig. 3). Likewise, with the whole brain ROI, atrophic rates
were only linked to LM-del decline over a year in AD, while
the effect sizes were substantially reduced in MCI (Fig. 4).
These “butterfly plots” show that there is a clear boosting of
power for detecting statistical effects on atrophy when fo-
cusing on the regions where greatest changes are expected
(i.e., the temporal lobes).

3.3. Correlating atrophic rates with CSF biomarkers

Rates of brain atrophy were significantly correlated with
CSF biomarker levels — A, tau, p-tau, and tau/A3 — at
baseline in the combined group of all subjects (blue CDF
curves in Fig. 5). These correlations did not reach statistical
significance within each diagnostic group independently,
except that the level of CSF A3 showed weak but signifi-
cant correlations (critical p = 0.004 in the temporal lobes
and 0.001 in the whole brain) in MCI (cyan CDF curves in
Fig. 5). Also, there were no detectable correlations between
rates of tissue atrophy and the rates of change in the CSF
biomarkers within the individual groups, with the exception
of tau/Af3 in the whole brain in AD (critical p = 0.003). The
ratio of tau to A also showed some weak correlations with
atrophic rates in the combined group (critical p = 0.0004 in
the temporal lobes and 0.001 in the whole brain). In the
common sample, clinical correlations were compared with
the results from CSF biomarkers. Baseline ADAS-cog and
CDR-SB rates of decline were more strongly correlated
with structural brain atrophy, as indicated by higher CDF
curves and higher critical p values, with significant corre-
lations also found in the separate diagnostic groups. Again,
the effect sizes are substantially boosted by focusing on a
temporal lobe region of interest, rather than including all the
voxels in the brain; this is clearly evident as the curves on
the right of each plot tend to rise more steeply at the original
and intersect the FDR reference line (y = 20x) at a higher



1470

a. AD
Whole Brain Temporal Lobes
y=20x y=20x
=y ADAS-cog**
:-'_'5.
* _
_=§ ADAS-cog LM-im*
=
v AVLT-5%
£ MusE / MMSE
x| FA
E‘ LM—ig Q
3 AVLT-S
O
CDR-SB ) CDR-SB
AVLT-del AVLT-del
LM-del : i LM-del

0.05 0025 0 0.025 0.05
Observed p-value

*¥C.P>0.01; *C.P£>0.0001

b.

Culmulative Probability

X. Hua et al. / Neurobiology of Aging 31 (2010) 1463—1480

MCI
Whole Brain Temporal Lobes

y=20x

y=20x

ADAS-cog**
7 AVLT-5**

0.05 0.025 0 0.025 0.05
Observed p-value

Fig. 3. Whole brain and temporal lobe atrophic rates are correlated with baseline clinical measures in Alzheimer’s disease (AD) (a) and mild cognitive impairment
(MCI) (b) groups. Significant correlations are marked with a critical p value greater than 0.01 or 0.0001. Interestingly, the Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS-cog), perhaps the most widely used cognitive measure in clinical trials, was most strongly correlated at baseline with future atrophic
rates, in both AD and MCI groups. Again, the cumulative distribution functions (CDF) curves for the temporal lobe data tend to rise more sharply at the origin,
compared with curves computed from all the voxels in the brain. This is visually evident when comparing curves of the same color on each side of the plot. AVLT,
Rey Auditory Verbal Learning Test; AVLT-5, AVLT conducted immediately after each of the 5 learning trials; AVLT-del, AVLT conducted after a 30-minute delay;
CDR-SB, Sum-of-boxes Clinical Dementia Rating; FAQ, Functional Assessment Questionnaire; LM, Logical Memory; LM-del, LM test conducted after a 30-minute
delay; LM-im, LM test conducted immediately after information was read to the subject; MMSE, Mini Mental State Examination; C.P., critical p value.

intersection point, whose x-value denotes the highest p
value threshold that can be applied to the statistical maps
while preserving the expected false discovery rate at the
conventional level of 5%.

3.4. Temporal lobe atrophy rates linked to AD risk genes

Carriers of the e4 allele of the ApoE (apolipoprotein E)
gene, a commonly carried risk gene for late-onset AD
(Roses and Saunders, 1994; Saunders et al., 1993), showed
faster atrophic rates in the temporal lobes overall. Associ-
ations were weak but significant within each diagnostic
group individually only inside the temporal lobes, but
strong when all groups were combined (Fig. 6). The newly
discovered risk allele (rs-10845840, which codes for
GRIN2b, a glutamate receptor subunit; Stein et al., 2010)
was associated with atrophic rates in the combined group,
but more weakly than ApoE (Fig. 6; higher curves denote
stronger effects). When ApoE4 was added to the statistical
model that estimated the age and sex effects on the rates of
atrophy, the sex effect turned out to be stronger (AD: critical
p = 0.001; MCI: 0.02; CTL: not significant; ALL: 0.02) but
the age effect was slightly attenuated (AD: not significant;
MCT: critical p = 0.007; CTL: 0.0008; ALL: 0.01) inside
the temporal lobes.

When expanding the search region to the whole brain,
the presence of the ApoE4 risk allele was no longer asso-
ciated with higher atrophic rates in individual diagnostic

groups, but the effect remained significant in the combined
group.

3.5. Faster temporal lobe atrophy in converters to AD
within 1 year

MCI subjects who converted to AD within a year (13%
of the total MCI group) showed faster atrophic rates than
non-converters, as seen in the contrast map and the signif-
icance map (Fig. 7). Converters, on average, displayed
2%-3% faster atrophic rates than non-converters in the
temporal lobes. A similar test in the whole brain did not
reach statistical significance (critical p = not significant).

3.6. Correlations between atrophic rates and other risk
factors

We evaluated correlations between atrophic rates and
histories of cardiovascular, endocrine-metabolic, gastroin-
testinal disorders, alcohol abuse, drug abuse, and smoking.
A medical history of drug abuse was weakly associated with
a faster rate of tissue atrophy (critical p = 0.0001) in the AD
group only, while the other factors had no detectable effect.

3.7. Using covariates to boost power in clinical trials

Given the age and sex effects in atrophic rates, we broke
down the MCI groups into 6 age- and sex-divided sub-
groups. The n80s (sample size estimates) and 95% confi-
dence intervals are shown in Table 1. In this table, lower
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Fig. 4. Whole brain and temporal lobe atrophic rates correlated with rates of clinical decline, for various different clinical measures, in Alzheimer’s disease
(AD) (a) and mild cognitive impairment (MCI) (b) groups separately. Significant correlations are marked with critical p > 0.01 or > 0.0001. Sum-of-boxes
Clinical Dementia Rating (CDR-SB) is the measure examined here whose change over time was the most highly correlated with atrophic rates in MCI.
Comparison of curves of the same color on either side of the y axis shows that, in general, the analyses of the temporal lobe voxels give higher effect sizes
(steeper cumulative distribution functions [CDFs] than those that include all the voxels in the brain. AVLT, Rey Auditory Verbal Learning Test; AVLT-5,
AVLT conducted immediately after each of the 5 learning trials; AVLT-del, AVLT conducted after a 30-minute delay; CDR-SB, Sum-of-boxes Clinical
Dementia Rating; FAQ, Functional Assessment Questionnaire; LM, Logical Memory; LM-del, LM test conducted after a 30-minute delay; LM-im, LM test
conducted immediately after information was read to the subject; MMSE, Mini Mental State Examination; C.P., critical p value.

numbers are considered better as they imply that smaller
sample sizes would be required to detect a 25% change in
the rate of disease progress, measured by a specific AD
biomarker, in response to a potentially disease-modifying
drug. Younger men gave smaller n80s than older men, as
expected from the age effects in MCI, where younger MCI
subjects showed faster atrophy. For the sample size to be
smaller, the atrophic rate may be higher and/or its standard
deviation smaller. Women aged 60-70 or 70—80 had
smaller n80s than men at similar ages. This is also consis-
tent with the earlier finding that women had marginally
faster atrophic rates in MCI (by ~0.5%-1.5% per year
locally). In other words, trials focusing on younger subjects,
or with subanalyses focusing on women versus men, would
be better powered with these measures.

3.8. n80 for the CSF biomarkers

To compare structural MRI versus CSF biomarkers, we
computed the n80s based on 1-year changes in CSF biomar-
ker levels. Given their poorer reproducibility than MRI, the
n80s were much larger than those from neuroimaging mea-
sures (Table 2). Although clearly not their intended use, tens
of thousands to millions of subjects would need to be
recruited to detect a potential drug effect using CSF biomar-
kers as surrogate markers measuring the rate of disease
progression.

4. Discussion

In one of the largest ADNI 1-year follow-up studies, we
applied TBM to map the rates of atrophy throughout the
brain. Atrophic rates were shown to be correlated with some
demographic factors (age and sex), but not education or
BMI (although BMI has been associated with baseline lev-
els of atrophy in an independent sample of normal subjects
(Raji, et al., 2010). Atrophic rates were also associated with
CSF biomarker levels (A, tau, p-tau, tau/Af3), cognitive
performance, behavioral assessments, and risk genes
(ApoE, GRIN2bD).

In this study, greatest atrophy was primarily localized
to the temporal lobes and several broadly distributed gray
and white matter regions, and was evidenced by ventric-
ular expansions (Fig. 2). This pattern of localization of
atrophy agrees with many prior reports using voxel-based
morphometry, tensor-based morphometry, and cortical
thickness maps (Baron et al., 2001; Chetelat et al., 2002;
Frisoni et al., 2009; Karas et al., 2004; Pievani et al.,
2009; Scahill et al., 2002; Smith, 2002; Smith and Jobst,
1996; Whitwell et al., 2007), based on cross-sectional
data or smaller longitudinal studies.

This study was preceded by a smaller pilot study (20 AD,
40 MCI, 40 CTL) with a similar design, in which temporal
lobe atrophy rates were correlated with clinical measures
and biomarkers (Leow et al., 2009). The current study
substantially extended the earlier study by expanding the
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Fig. 5. Correlations between atrophic rates and cerebrospinal fluid (CSF) biomarker levels (biomarker and clinical labels are with and without borders,
respectively). Whole brain and temporal lobe atrophic rates were correlated with biomarker levels in the following rank order, from strongest to weakest
correlations: beta-amyloid peptides (Af), tau/A 3, phosphorylated tau proteins (p-tau), and tau, in CSF at baseline, in the combined group of all control (),
mild cognitive impairment (MCI; ;) and Alzheimer’s disease (AD; ,,) subjects (blue cumulative distribution function [CDF] curves) (a). CSF A levels
were weakly correlated with atrophic rates (critical p = 0.004 in the temporal lobes and 0.001 in the whole brain) in the MCI group (cyan curves) (b). The
amount of change in tau/A over 12 months was weakly linked to brain atrophic rates. Clinical correlations, computed in the common dataset, were compared
with the results from CSF biomarkers. In this common subsample, baseline Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) (a) and
Sum-of-boxes Clinical Dementia Rating (CDR-SB) (labeled as CDR) rates of decline (b) are more strongly correlated with structural brain atrophy, as
indicated by higher CDF curves and critical p values compared with CSF biomarker correlations. All. other correlations, with baseline and longitudinal
measures of CSF biomarkers, were not significant (not shown in the graph). C.P., critical p value; n.s., not significant.

search region to the whole brain, and by investigating age
and sex effects as well as correlations with many newly
added biomarkers and risk factors in a sample size almost 7
times larger. We confirmed earlier findings that temporal
lobe atrophy rates were faster in MCI converters than non-
converters, and were correlated with baseline CSF biomar-
ker levels (A, tau, p-tau, tau/Af) in the combined group,
with baseline LM-del in MCI, and with changes of CDR-SB
and LM-im in MCI; however, rate of atrophy, in the current
study, was not shown to correlate with baseline level of
p-tau, change in MMSE, and change in AVLT-del in MCI.
The discrepancy might be due to the sample composition
(although sample selection was unbiased) but is more likely
due to the sample size difference, which is 7 times larger
here. Additionally, we identified significant age and sex
differences in atrophic rates; temporal lobe atrophy rates
correlated with AB in MCI, baseline ADAS-cog, LM-im,
and AVLT-5 in AD, baseline ADAS-cog, AVLT-5, AVLT-
del, LM-im, FAQ, and MMSE in MCI, changes in LM-del,
ADAS-cog, and CDR-SB in AD, and changes in FAQ,
ADAS-cog, and LM-del in MCI. In the current study, we
were also able to detect the associations between com-
mon variants in the ApoE and GRIN2b genes and brain
atrophic rates; we also explored the implications of drug
trial enrichment by performing subanalyses based on this
information.

4.1. Age and sex effects

4.1.1. Age effects

The age effects on atrophic rates in our study are based
on comparing atrophic rates in individuals, which is not to
be confused with mapping disease acceleration or deceler-
ation within individual subjects scanned more than twice
(Sluimer et al., 2009). A recent non-ADNI study of indi-
viduals with 3 or more serial MRI scans (46 amnestic MCI
subjects who later converted to AD, 46 healthy controls, and
23 stable MCI subjects) found that the rates of atrophy do
tend to accelerate as individuals progress from amnestic
MCI to typical late-onset AD; and the rates of atrophy were
greater in younger than older MCI subjects (Jack et al.,
2008c). Our study, in a much larger sample of 684 ADNI
subjects (114 AD, 338 MCI, and 202 CTL), confirmed the
trend for faster degeneration in younger amnestic MCI sub-
jects versus older subjects. The most plausible explanation
is that younger MCI subjects have a more biologically
aggressive disease course than older subjects (Jack et al.,
2008c). There is substantial clinical and neuroimaging evi-
dence that early-onset AD (onset before age 65 and typi-
cally in the 40s and 50s) generally represents a more ag-
gressive form of disease than late-onset AD (onset after age
65) (Frisoni et al., 2007). A second possibility is that
younger MCI subjects may have a larger cognitive reserve
than older subjects; under this theory, young people may
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Fig. 6. Genetic influences on brain atrophy. The presence of the ApoE4
(marked by solid lines) and the GRIN2b risk gene (also known as single
nucleotide polymorphism [SNP] rs-10845840; dotted lines; Stein et al.,
2010) were associated with faster rates of atrophy in the temporal lobes,
with ApoE4 showing a greater statistical influence than GRIN2b, indicated
by the rank order of the cumulative distribution functions (CDFs) and by
the false discovery rate (FDR) critical p values. When expanding the search
region to the whole brain, the presence of the ApoE4 risk allele was no
longer associated with higher atrophic rates in individual diagnostic
groups, but the effect remained significant in the combined group. Risk
genes were coded as 0, 1, and 2 for O, 1 risk allele, and 2 adverse alleles,
respectively; association tests assumed an additive model of gene action.
Critical p values are shown for each test. AD, Alzheimer’s disease; MCI,
mild cognitive impairment; CTL, healthy elderly controls; ALL, all sub-
jects including AD, MCI, and CTL; n.s., not significant.

have greater ability to compensate for the brain deficits
so that symptoms may not be evident until brain atrophy
has progressed to a greater degree, and is proceeding
faster (see, e.g., Mortimer et al., 2005; but see also
Christensen et al., 2007 for an opposing view). Finally,
some very old subjects were assessed (80-90 years of
age), so one has to keep in mind the possibility of a
selection bias. Very old people in the study might tend to
be more well (well enough to participate in a neuroim-
aging study requiring multiple follow-ups), and have
lower atrophic rates; even though when those same peo-
ple were younger (long before ADNI) they may have had
even slower atrophy rates. In other words, early mortality
may prevent people from enrolling in ADNI if they die
earlier due to very fast atrophy, so the oldest subjects in
ADNI, as a survivor effect, may have slower atrophic
rates for this reason. This attrition effect could explain
the paradoxical “adverse” effect of young age in a cross-
sectional study (faster atrophy in younger people), even
when people’s atrophic rates may speed up as the disease
progresses (within an individual); this has been demon-
strated in early-onset AD (Chan et al., 2003; Ridha et al.,
2006) and late-onset AD (Jack et al., 2008¢). In a normal
aging study, Scahill et al. (2003) found evidence that

atrophic rates accelerated with increasing age; our study
also showed a small age effect in the control group, with
a similar direction of correlation.

4.1.2. Sex effects

We provided the first structural MRI evidence, to our
knowledge, of sexual dimorphism in atrophic rates, al-
though several studies have found worse cognitive and
behavioral deficits in women versus men with AD. Most
early MRI studies failed to detect a sex difference in atro-
phic rates, but were limited by small sample sizes and
limited statistical power. Sex differences in brain structure
are found naturally and well studied (see, e.g., Brun et al.,
2009 for a TBM study) but sex differences in the rates of
brain change over time are less commonly reported, except
in studies of childhood brain development where they occur
around puberty (Giedd et al., 1999). Why atrophic rate was
faster in women is not clear. Numerous demographic studies
provide evidence for a “male-female health-survival para-
dox”. According to this, older men are generally in better
health and are less limited in their daily activities than
women of the same age, but mortality rates are higher in
men than women at all ages (Christensen, 2008). Genetic
variation in the sex chromosomes may contribute to sex
differences in the incidence of some comorbid disorders.
Men may have earlier and higher incidence of hypertension
and cardiovascular diseases (high mortality risk diseases)
while women suffer more from migraine, arthritis, and mus-
culoskeletal diseases (low mortality risk diseases) (Macin-
tyre et al., 1996); this may be related to the cohort effect
discussed earlier. Sex hormones may also influence the
expression of genes that affect lifespan and longevity
(Tower, 2006; Tower and Arbeitman, 2009).

MCI converters vs. non-converters
Mean differences  FDR corrected p-map

3%2 -1 0 1 2 3%0 0.001  <0.002

Fig. 7. Mild cognitive impairment (MCI) converters showed faster rates of
brain atrophy in temporal lobes than MCI non-converters. The mean difference
map shows regions where atrophy rates are faster in converters than non-
converters (left panel; blue colors: 3% faster). Red colors show regions where
ventricular expansion is faster in converters than nonconverters. The right
panel shows the false discovery rate (FDR) corrected p maps displaying
regions with significant difference overall (critical p = 0.002).
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Table 1
The n80s for groups of MCI subjects subdivided by age and sex, and in
the combined group with all MCI subjects included

60-70 years 70-80 years 80-90 years
Women 46 [26,102] 55 [40, 88] 117 [70,233]
Men 68 [47,108] 96 [69,147] 117 [83,182]
Combined 90 [75, 110]

Sub-analyses focusing on women or younger subjects led to smaller sample
size estimates (or, equivalently, greater power to detect a disease slowing
effect in a given sample size). The numerical summaries, used for com-
puting n80s, were generated within a statistically predefined ROI inside the
gray matter of the entire brain, providing an overall estimate of the gray
matter atrophic rate for each individual.

4.1.3. Baseline differences

We identified significant age and sex differences in base-
line measures of brain atrophy, within each group indepen-
dently and in the combined group. These baseline effects
may reflect a combination of (1) the cumulative influence of
age and sex throughout life, and (2) naturally occurring sex
differences in brain structure, as different structures tend to
occupy different proportions of the total brain volume in
men versus women (i.e., allometry; Brun et al., 2009).
Lower education levels are also linked to a higher risk of
developing AD and faster rate of progression when com-
pared with more highly educated people (Ngandu et al.,
2007; Scarmeas et al., 2006). Higher BMI, an index of
obesity, is associated with greater brain atrophy in elderly
normal subjects (Raji, et al., 2010). We therefore added
education and BMI to the statistical models of age and sex,
but the conclusions remained the same even after adjusting
for these additional factors. BMI was associated with base-
line atrophy but not with atrophic rates.

4.2. Structural MRI, clinical, and CSF biomarkers

Different biomarkers provide complementary informa-
tion at different stages of AD (Jack et al., 2008b; Jagust et
al., 2009). In particular, structural MRI measures tend to
correlate better with cognitive test scores than with CSF
biomarker levels. This may be because (1) CSF biomarker
changes tend to precede the gross anatomical changes on
MRI, and (2) because CSF measures are primarily intended
to help with diagnosis rather than resolve subtle changes
over time within diagnostic categories. We note that CSF
measures were not used to assist diagnosis in the ADNI
study. However, at least part of the difference in statistical
power is due to the different sample sizes of subjects who
had available cognitive measures versus CSF biomarker
measures. We tested a common set of subjects who had both
cognitive and CSF measures (Fig. 5). By reducing the full
sample (n = 684 at baseline and n = 660 with 1-year
follow-up) to the common set (n = 363 at baseline and n =
251 with 1-year follow-up), the clinical correlations all
became weaker; however, their statistical effects remained
higher than those of CSF biomarkers — for example, there
were significant correlations even within the separate diag-

nostic groups, while only a couple of CSF biomarkers (base-
line level of AB in MCI and rate of tau/Af3 decline in AD)
survived statistical testing within the separate diagnostic
groups.

4.3. AD risk genes

ApoE4 is a well-known AD risk gene (Corder et al.,
1993, Roses, 1996; Roses and Saunders, 1994, Roses et al.,
1995, Saunders et al., 1993), and in our earlier cross-sec-
tional study of 676 ADNI subjects, ApoE2 (the “protective”
allele) was associated with reduced CSF volume (an index
of lesser brain atrophy) and ApoE4 was associated with
greater temporal lobe atrophy (Hua et al., 2008b). In this
longitudinal analysis, ApoE4 and GRIN2b were linked to
faster rates of temporal lobe atrophy, in a dose-dependent
fashion. GRIN2b is a newly identified risk SNP that predicts
temporal lobe volumes in ADNI at baseline (Stein et al.,
2010), but its association with AD is not as strong as ApoE,
so requires replication. As well as its use for measuring
disease progression, structural MRI measures can also be
used to identify genes that influence brain volumes in ge-
nome-wide association studies (GWAS) (Joyner et al.,
2009; Potkin et al., 2009; Stein et al., 2010).

4.4. Statistical analyses

We applied stratified analyses and ran separate regres-
sions independently in each diagnostic group, to ensure that
the observed statistical effects were not driven by diagnosis.
Alternatively, the analysis could be carried out by pooling
all subjects, by applying indicator variables to encode diag-
nostic groups and interaction terms to quantify inter-group
differences on the main effects. However, this increases the
computational burden, and each analysis already involves
~2,000,000 correlations. Because of the very large number
of possible interactions, and the likelihood of not being able
to fit them all stably, we did not test for interactions between
diagnostic groups and predictor variables. We also did not
attempt to quantify inter-group differences in the main ef-

Table 2

The sample sizes (n80s) for AD and MCI using CSF biomarkers versus
MRI measures of whole-brain gray matter atrophy and temporal

lobe atrophy

AD (n = 50) MCI (n = 122)
CSF biomarkers
AB\ 4 5,721,531 75,816
t-tau 81,292 19,098
t-tau/AB, 4 66,293 533,091
MRI measures
Gray matter atrophy 43 86
Temporal lobe atrophy 43 82

The numerical summaries of MRI imaging measures were generated within
a statistically predefined ROI with the gray matter of the entire brain and
in the temporal lobes, providing a measure of the overall gray matter
atrophic rate and temporal lobe atrophic rates, respectively. AD, Alzhei-
mer’s disease; MCI, mild cognitive impairment; MRI, magnetic resonance
imaging; CSF, cerebrospinal fluid.
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fects, which requires a second order analysis and has still
greater statistical power requirements. Instead, we treated
the 3 diagnostic groups independently, merely to ensure that
the observed statistical effects were not driven by diagnosis.

In all analyses, we first ran correlations in the separate
clinical groups, and then we ran another correlation in the
combined group, where appropriate. This is the most ag-
nostic approach as it allows the correlations to differ, in
principle, in the different diagnostic categories, avoiding the
risk that the detected correlations may be shadowing diag-
nosis. We did not perform correlations with clinical mea-
sures in the combined group. As clinical measures are used
to determine diagnosis, a correlation in the combined group
will be significant by construction. The CSF biomarkers,
however, were not used to define diagnosis so it is reason-
able to correlate them with levels of atrophy across the
combined group. Even so, correlations detected in the com-
bined group may not even apply within some of the groups,
either indicating a lack of association or, more likely, lim-
ited power to track subtle disease progression within the
reduced samples of subjects in individual diagnostic groups.
This effect likely explains the lack of correlations with CSF
biomarkers within groups. The correlations between CSF
biomarkers and MRI changes tend to break down as the
disease progresses, as changes in CSF biomarker levels may
primarily occur prior to the MRI changes. A similar pattern
has been noted in studies of amyloid PET (Braskie et al.,
2008), where cortical thinning may not correlate with amy-
loid deposition if the 2 processes occur or saturate at dif-
ferent times. In a recent study using serial imaging, the rate
of neurodegeneration was shown to associate with clinical
symptoms but dissociate from amyloid deposition measured
by "'C Pittsburgh compound B (PIB) positron emission
tomography (Jack et al., 2009).

We used categorical variables or indicator variables to
encode binary predictors, such as sex, medical history, and
conversion to AD, each of these variables only has 2 distinct
classes, i.e., male versus female, those with or without a
medical history, and converters versus non-converters. If a
simple linear regression only includes a 2-class categorical
variable as the independent variable, the regression acts as
a 2-sample Student ¢ test. An added benefit of using regres-
sions over 7 tests is that regression allowed us to control for
effects of several covariates simultaneously. For example,
by fitting both age and sex in the regression model, the sex
effect was controlled for when assessing any age effects on
atrophic rates.

4.5. Choices of search region

The results in the whole brain ROI are generally consis-
tent with those derived from the temporal lobes, but are
weaker in statistical power. This is expected as brain de-
generation is not uniformly distributed across the brain, nor
does it progress uniformly. The volume loss pattern from
mild to moderate AD spreads over time from temporal and

limbic cortices into frontal and occipital brain regions,
largely sparing primary sensorimotor cortices (Braak and
Braak, 1991; Thompson et al., 2003). One advantage of
focusing on the temporal lobes is the improved statistical
power by restricting the search region to the area most
affected in MCI and early AD. In examining genes influ-
encing brain atrophy (Fig. 6) and comparing differences
between groups of MCI converters and non-converters (Fig.
7), the statistical effects were only significant in the tempo-
ral lobes —which makes sense as these are the regions with
greatest pathologic burden in early AD. The inclusion of
many voxels with much slower atrophic rates and with
lower effect sizes tends to inflate the number of voxels
assessed to the point where no FDR-controlling threshold
can be found. Nevertheless, it is also important to examine
the results across the entire brain to better understand fac-
tors influencing brain atrophy in normal aging and AD.

4.6. Conclusions and limitations

Our study is 1 of many that support the use of structural
MRI for providing valid surrogate markers in clinical drug
trials. MRI is also useful for detecting factors that affect
structural changes in anatomical regions involved in AD.
CSF biomarkers, despite their value for early diagnosis,
might not be so effective for tracking disease progression
over time or even for evaluating therapeutic interventions in
MCI and AD. For example, their n80s — measures of
sample size requirements to detect a fixed percent reduction
in the rate of progression — are 1000—10,000 times larger
than those from structural MRI (Table 2).

TBM-derived maps of atrophic rates, coupled with
voxel-based statistics, offer an easy-to-implement process
to investigate factors that exert negative or positive influ-
ences on aging and AD. Full 3-dimensional maps are used
in these correlations, as opposed to only 1 biomarker mea-
sure per individual. This type of map-based method may
offer more information and spatial detail on the profile of
effects, and may offer better statistical power if effect sizes
are not constant across the brain.

Each AD biomarker, derived from structural MRI, clin-
ical, or CSF measures, can be used independently to eval-
uate drug treatment effects, providing a surrogate outcome
measure to track the rate of disease progress. As a result of
using different biomarkers, the sample size estimates (n80)
should be interpreted with care. For example, a 25% reduc-
tion in the atrophic rate (measured by MRI) may have a
different functional significance for a patient than a 25%
reduction in the rate of decline for clinical or cognitive test
scores; similarly, it may also have a different biological
significance than a 25% reduction in the rate of change in
CSF biomarkers. For example, there may be important and
relevant biological events that do not have an immediate
imaging correlate. Future efforts will focus on combining
multiple biomarkers that measure different aspects of dis-
ease progress to reduce the sample size even further.
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This study has some limitations. The age and sex effects
on atrophic rates, which were still significant here after
controlling for education, BMI, and ApoE4, need to be
replicated in future independent studies. A more complete
dataset from a large number of subjects with MRI, PIB-
PET, [18F] fluorodeoxyglucose (FDG)-PET, diffusion ten-
sor imaging (DTI), resting-state functional MRI, and arterial
spin labeling is now being collected to explore the comple-
mentary value of each of these neuroimaging markers. Fu-
ture longitudinal ADNI studies will make use of more than
2 serial scans, allowing acceleration hypotheses regarding
age effects to be tested in the same subjects. More advanced
statistical designs, such as random effects or mixed effects
models, may then be used to estimate intra-subject variance
and group effects with repeated measures (Fitzmaurice et
al., 2004; Frost et al., 2004; Schuff et al., 2009).
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