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bstract

We set out to determine factors that influence the rate of brain atrophy in 1-year longitudinal magnetic resonance imaging (MRI) data.
ith tensor-based morphometry (TBM), we mapped the 3-dimensional profile of progressive atrophy in 144 subjects with probable
lzheimer’s disease (AD) (age: 76.5 � 7.4 years), 338 with amnestic mild cognitive impairment (MCI; 76.0 � 7.2), and 202 healthy

ontrols (77.0 � 5.1), scanned twice, 1 year apart. Statistical maps revealed significant age and sex differences in atrophic rates. Brain
trophic rates were about 1%–1.5% faster in women than men. Atrophy was faster in younger than older subjects, most prominently in mild
ognitive impairment, with a 1% increase in the rates of atrophy and 2% in ventricular expansion, for every 10-year decrease in age.
BM-derived atrophic rates correlated with reduced beta-amyloid and elevated tau levels (n � 363) at baseline, baseline and progressive
eterioration in clinical measures, and increasing numbers of risk alleles for the ApoE4 gene. TBM is a sensitive, high-throughput biomarker
or tracking disease progression in large imaging studies; sub-analyses focusing on women or younger subjects gave improved sample size
equirements for clinical trials.

2010 Elsevier Inc. All rights reserved.
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. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disor-
er characterized by pathologic accumulation of misfolded
eta-amyloid (A�) peptides in the neuropil, and hyperphos-
horylated tau (p-tau) proteins in neurons (Selkoe, 2004;
kovronsky et al., 2006). The macroscopic effects of neu-
onal atrophy, cell death, and myelin impairment are detect-
ble on high-resolution structural magnetic resonance im-

* Corresponding author at: UCLA School of Medicine, Laboratory of
euro Imaging, Departmant of Neurology, Neuroscience Research Build-

ng 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, United
tates. Tel.: �1 310 206 2101; fax: �1 310 206 5518.
pE-mail address: thompson@loni.ucla.edu (P. Thompson).
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ging (MRI), offering an in vivo index of progressive brain
eterioration. AD pathology accumulates up to 2 decades
efore overt cognitive decline, and minimally symptomatic
ubjects, with mild cognitive impairment (MCI) (Petersen,
003; Petersen et al., 2001), are a key target in clinical trials
Grundman et al., 2004). Various imaging measures have
een proposed as biomarkers of the disease, reflecting dif-
erent aspects of AD pathology. Efforts are underway to
ssess their power for diagnosis, predicting future decline,
nd sensitivity to the effects of potential disease-modifying
reatments (Frisoni et al., 2009; Jagust et al., 2009; Shaw et
l., 2007).

Longitudinal brain MRI can be used to track disease

rogression with high precision and statistical power (Hua

mailto:thompson@loni.ucla.edu
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t al., 2009; Leow et al., 2006). Brain MRI scans can be
nalyzed with automated or semi-automated methods to
easure hippocampal atrophy (Chetelat et al., 2008; Jack et

l., 2004; Morra et al., 2009a, 2009b; Schuff et al., 2009;
hompson, et al., 2004), ventricular enlargement (Car-
ichael, et al., 2006; Chou et al., 2008, 2009a, 2009b; Jack

t al., 2003; Nestor et al., 2008; Thompson, et al., 2004), or
hole brain atrophy (Fox et al., 1999, 2000; Sluimer et al.,
008; Smith, et al., 2002, 2004). The trajectory of brain
trophy on structural MRI largely mirrors the anatomical
attern and trajectory of neurofibrillary tangle deposition
Chetelat et al., 2002; Thompson, et al., 2003; Vemuri et al.,
008, 2009; Whitwell et al., 2008), correlates with clinical
ecline (Evans, et al., 2010; Fox et al., 1999; Hua et al.,
008b; Jack et al., 2009; Leow et al., 2009; Thompson, et
l., 2004), and predicts future conversion from preclinical to
ymptomatic AD (Apostolova et al., 2006; Chetelat et al.,
008; Hua et al., 2008b; Jack et al., 1999; Misra et al., 2009;
isacher et al., 2009; Vemuri et al., 2009), suggesting that
RI measures are useful outcome measures for early diag-

osis (Chetelat and Baron, 2003) and clinical trials (Frisoni
t al., 2010; Halperin et al., 2009; Hill, 2010; Mueller et al.,
005b, 2006; Shaw et al., 2007).

As AD progresses slowly, drug trials are usually under-
owered to detect subtle therapeutic effects in a reasonable
ime interval, given the high cost of scanning large numbers
f subjects. Several sample “enrichment” strategies have
een proposed to selectively target subjects most likely to
ecline based on their genotypes (e.g., ApoE4 carriers,
hose with abnormal A� precursor protein genes, presenilin

and 2) (Saunders et al., 1993; Consensus Report, 1998),
RI markers of early AD (e.g., hippocampal or entorhinal

trophy) (Devanand et al., 2007; Du et al., 2001; Frisoni et
l., 1999; Jack et al., 2004; Morra et al., 2009b), or cere-
rospinal fluid (CSF) biomarker profiles (e.g., A�, tau,
-tau) (Clark, et al., 2003; de Leon et al., 2006; Hansson et
l., 2006; Ibach et al., 2006), to reduce patient heterogeneity
nd improve statistical power in trials (Clark, et al., 2008;
rank, et al., 2003; Shaw et al., 2007; Thal, et al., 2006; ).
f factors influencing atrophic rates were better understood,
hey could be used, in principle, to stratify cohorts into
ubgroups of subjects most likely to decline. Sex and age
ifferences in atrophic rates are still poorly understood:
trophic rates may be faster in young versus older MCI
ubjects (Jack et al., 2008c), and greater atrophy is seen in
arly- versus late-onset AD (Frisoni et al., 2007). Women
ay have higher risk of developing AD than men (Gao et

l., 1998) and, relative to men, women with AD may suffer
rom greater cognitive impairments (Bai, et al., 2009;
leisher et al., 2005; Henderson and Buckwalter, 1994;
oreno-Martinez, et al., 2008), greater functional disability

Dodge et al., 2003), and more frontal metabolic impair-
ent (Herholz et al., 2002). Even so, MRI evidence of a

sexual dimorphism” in AD is still lacking. Most of the

tudies to date are underpowered, i.e., do not have a large 7
nough sample size to detect a subtle sex effect on atrophic
ates.

Here we assessed how brain atrophic rates depend on age
nd sex, in one of the largest MRI studies to date, in the
ope that adjusting for these factors might enhance the
ower to track brain atrophy and factors that influence it.
e related atrophic rates to other AD biomarkers, including
�, tau, and hyperphosphorylated tau (p-tau) levels in the
SF. We correlated atrophic rates with well known and
andidate risk genes (ApoE and GRIN2b). We hypothesized
hat there would be age and sex differences in atrophy rates,
n a diffuse pattern throughout the brain. We also attempted
o rank the clinical variables in terms of their strength of
ssociation with rates of atrophy. We hypothesized that
trophic rates might correlate more strongly with cognitive
cores, both at baseline and their rates of decline, than with
hanges in CSF biomarkers, which have poorer temporal
eproducibility. We also explored some implications of
hese correlations for boosting power in clinical trials.

. Methods

.1. Subjects

Baseline and 1-year follow-up brain MRI scans were
ownloaded from the Alzheimer’s Disease Neuroimaging
nitiative (ADNI) public database (www.loni.ucla.edu/
DNI/Data) on or before June 1, 2009, and reflect the status
f the database at that point; as data collection is ongoing,
e focused on analyzing all available baseline and 1-year

ollow-up scans, together with the associated demographic
nformation, apolipoprotein E (ApoE) genotypes, CSF bi-
marker measures (for A�, tau, p-tau), and clinical and
ognitive databased information on functional and behav-
oral assessments. ADNI is a large 5-year study launched in
004 by the National Institute on Aging (NIA), the National
nstitute of Biomedical Imaging and Bioengineering
NIBIB), the Food and Drug Administration (FDA), private
harmaceutical companies and nonprofit organizations, as a
60 million public-private partnership. The primary goal of
DNI has been to test whether serial MRI, positron emis-

ion tomography (PET), other biological markers, and clin-
cal and neuropsychological assessments acquired at multi-
le sites (as in a typical clinical trial), can replicate results
rom smaller single site studies measuring the progression
f MCI and early AD. Determination of sensitive and spe-
ific markers of very early AD progression is intended to aid
esearchers and clinicians to monitor the effectiveness of
ew treatments, and lessen the time and cost of clinical
rials. The Principal Investigator of this initiative is Michael

. Weiner, MD, VA Medical Center and University of
alifornia, San Francisco.

We analyzed 1368 brain MRI scans, from 144 probable
D patients (age at baseline: 76.5 � 7.4 years), 338 indi-
iduals with amnestic mild cognitive impairment (MCI;

6.0 � 7.2), and 202 healthy elderly controls (CTL; 77.0 �

http://www.loni.ucla.edu/ADNI/Data
http://www.loni.ucla.edu/ADNI/Data
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.1), each scanned twice, 1 year apart. ADNI patients are
canned at other intervals, but here were focused on the
-year follow-up data, as such an interval is common in
linical trials, and we wanted to focus on an interval over
hich changes would be readily detectable. All AD pa-

ients met NINCDS/ADRDA Alzheimer’s Criteria (pro-
osed in 1984 by the National Institute of Neurological
nd Communicative Disorders and Stroke and the Alz-
eimer’s Disease and Related Disorders Association) for
robable AD (McKhann et al., 1984). ADNI inclusion
nd exclusion criteria (Mueller et al., 2005a, 2005b), are
etailed online at www.alzheimers.org/clinicaltrials/
ullrec.asp?PrimaryKey�208.

All subjects (n � 684, consisting of 144 AD, 338 MCI,
nd 202 control subjects) completed thorough clinical and
ognitive assessments at the time of baseline scan. During
he 1-year follow-up, 660 (122 AD, 336 MCI, and 202
ontrol subjects) completed an additional set of clinical and
ognitive tests. Cognitive tests examined here included the
lzheimer’s Disease Assessment Scale-cognitive subscale

ADAS-cog), a 70-point scale designed to measure the se-
erity of cognitive impairment; this is currently the most
idely used cognitive measure in AD trials (Mohs, 1994;
osen et al., 1984). It consists of 11 tasks assessing learning
nd memory, language production and comprehension, con-
tructional and ideational praxis, and orientation. The Mini
ental State Examination (MMSE) provides a global mea-

ure of mental status, evaluating 5 cognitive domains: ori-
ntation, registration, attention and calculation, recall, and
anguage (Cockrell and Folstein, 1988; Folstein et al.,
975). The Rey Auditory Verbal Learning Test (AVLT)
valuates learning and memory functions by assessing the
bility to recall a list of 15 words, both immediately after
ach of the 5 learning trials (AVLT-5), and after a 30-
inute delay (AVLT-del) (Rey, 1964). The Logical Mem-

ry (LM) test is a modified version of the episodic memory
ssessment from the Wechsler Memory Scale-Revised
WMS-R; Wechsler, 1987). Subjects were asked to recall a
hort story consisted of 25 pieces of information, both
mmediately after it was read to the subject (LM-im), and
fter a 30 minute delay (LM-del). Functional and behavioral
ssessments, analyzed here, included the sum-of-boxes
linical Dementia Rating (CDR-SB), ranging from 0–18.
he CDR-SB measures dementia severity by evaluating
atients’ performance in 6 domains: memory, orientation,
udgment and problem solving, community affairs, home
nd hobbies, and personal care (Berg, 1988; Hughes et al.,
982; Morris, 1993). Finally, the Functional Assessment
uestionnaire (FAQ) summarizes the functional activities of
aily living (Pfeffer et al., 1982). Medical histories of cardio-
ascular, endocrine-metabolic, gastrointestinal disorders,
lcohol abuse, drug abuse, and smoking were obtained at
he screening visit from the participant and the study
artner. Complete details of the ADNI assessments are

ound in the ADNI Procedures Manual (http://www.adni- g
nfo.org/Scientists/Pdfs/adniproceduresmanual12.pdf)
nd www.adni-info.org.

The study was conducted according to the Good Clinical
ractice guidelines, the Declaration of Helsinki, US 21 CFR
art 50-Protection of Human Subjects, and Part 56-Institu-

ional Review Boards. Written informed consent was ob-
ained from all participants.

.2. CSF biomarkers

CSF samples were obtained from a subset of the ADNI
ubjects through lumbar puncture, after an overnight fast.
amples collected at various sites were transferred, on dry

ce, to the ADNI Biomarker Core Laboratory at the Uni-
ersity of Pennsylvania Medical Center. Levels of A� 1–42
eptide, total tau, and tau phosphorylated at the threonine
81 (p-tau) were measured in 363 subjects at baseline (83
D, 173 MCI, and 107 CTL), and in 251 subjects at 1-year

ollow-up (50 AD, 122 MCI, and 79 CTL).

.3. Genotyping

ApoE and genome-wide genotyping were performed on
NA samples obtained from subjects’ blood. Genomic
NA samples were analyzed on the Human610-Quad Bead-
hip (Illumina, Inc, San Diego, California) at the University
f Pennsylvania (see www.adni-info.org for detailed infor-
ation on blood sample collection, DNA preparation, and

ingle nucleotide polymorphism [SNP] genotyping meth-
ds). We also assessed the effect of a common genetic
ariant in the GRIN2b gene, a subunit of the N-methyl-D-
spartic acid (NMDA)-type glutamate receptor, at SNP rs-
0845840, which we previously found was associated with
ilateral temporal lobe volume in a genome-wide study of
he ADNI data (Stein et al., 2010) using the Plink software
Purcell et al., 2007). This SNP encodes a polymorphism in
he glutamate receptor, and is over-represented in AD ver-
us controls and is associated with cognitive decline (Stein
t al., 2010).

.4. MRI acquisition and image correction

Scans were acquired on 1.5 T magnetic resonance (MR)
canners at 60 sites across the United States and Canada.
lthough different type of scanners (GE, Siemens, or Phil-

ps) and various software platforms were used, a standard-
zed MRI protocol ensured cross-site comparability (Jack et
l., 2008a). A typical 1.5 T MR protocol involved a 3-di-
ensional sagittal MP-RAGE (magnetization prepared

apid gradient-echo) scan with repetition time (TR): 2400
s, minimum full echo time (TE), inversion time (TI): 1000
s, flip angle: 8°, 24 cm field of view, and a 192 � 192 �

66 acquisition matrix in the x-, y-, and z-dimensions,
ielding a voxel size of 1.25 � 1.25 � 1.2 mm3, later
econstructed to 1 mm isotropic voxels.

Image corrections were applied using a processing pipe-
ine at the Mayo Clinic, consisting of: (1) correction of

eometrical distortion due to gradient nonlinearity (Jovicich

http://www.alzheimers.org/clinicaltrials/fullrec.asp?PrimaryKey=208
http://www.alzheimers.org/clinicaltrials/fullrec.asp?PrimaryKey=208
http://www.adni-info.org/Scientists/Pdfs/adniproceduresmanual12.pdf
http://www.adni-info.org/Scientists/Pdfs/adniproceduresmanual12.pdf
http://www.adni-info.org
http://www.adni-info.org
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t al., 2006), i.e., “grad warp”; (2) “B1-correction” to adjust
or image intensity inhomogeneity due to B1 nonuniformity
Jack et al., 2008a); (3) “N3” bias field correction for re-
ucing residual intensity inhomogeneity (Sled et al., 1998);
nd (4) geometrical scaling to remove scanner- and session-
pecific calibration errors using a phantom scan acquired for
ach subject (Gunter et al., 2006). All original image files
s well as all corrected images are available at www.
oni.ucla.edu/ADNI/Data.

.5. Image preprocessing

First, each subject’s follow-up scan was linearly regis-
ered to their baseline scan, with a 9-parameter (9P) trans-
ormation driven by a mutual information (MI) cost func-
ion (Collins, et al., 1994), to adjust for linear differences in
osition and scale across time. 9P registration can correct
or scanner voxel size variations in large longitudinal stud-
es involving multiple sites, scanners and acquisition se-
uences (Clarkson et al., 2009), consistently outperforming
-parameter (6P) registration in terms of statistical power
Hua et al., 2009; Paling et al., 2004). Second, to account for
lobal differences in brain scale across subjects, the mutu-
lly aligned scan pairs were then linearly registered to the
nternational Consortium for Brain Mapping template
ICBM-53) (Mazziotta et al., 2001), applying the same 9P
ransformation to both mutually aligned scans. Globally
ligned images were resampled in an isotropic space of 220
oxels along x-, y- and z-dimensions with a final voxel size
f 1 mm3.

.6. Tensor-based morphometry (TBM) and 3D maps of
trophic rates

Individual maps of atrophic rates (also known as “Jaco-
ian maps”) were derived from a TBM analysis of MRI
cans acquired 1 year apart. These maps represent the rates
f tissue shrinkage (or CSF space expansion) at each voxel
ocation in the brain. A Jacobian map was created by non-
inearly warping the 1-year follow-up scan to match the
aseline scan of the same individual, driven by a mutual
nformation cost function, and a regularizing term called the
ymmetrized Kullback–Leibler (sKL-MI) distance
Yanovsky et al., 2009). Registration parameters (sigma �

and lambda � 8) were chosen based on our earlier opti-
ization study (Hua et al., 2009). A color-coded map of the

acobian determinants was computed from the gradient of
he deformation field to illustrate regions of volume expan-
ion (i.e., with det J(r) � 1), or contraction (i.e., with J(r) �
) (Ashburner and Friston, 2003; Chung et al., 2001; Free-
orough and Fox, 1998; Riddle et al., 2004; Thompson, et
l., 2000; Toga, 1999) over the 1-year interval, yielding a
ap that estimates tissue change rates. Jacobian maps were

lso spatially normalized across subjects by nonlinearly
ligning all individual maps to a minimal deformation tem-
late (MDT), for regional comparisons and group statistical

nalysis. The MDT represented the average shape of 40 t
ealthy elderly controls; the procedure to construct the
DT is detailed in Hua et al. (2008a, 2008b). Average maps
ere computed by taking the mean at each voxel of the

acobian maps across subjects.

.7. Statistical analyses

We performed several statistical analyses to assess fac-
ors influencing or related to brain atrophic rates in Alzhei-
er’s disease and normal aging. First, general linear regres-

ions were used to investigate the relations between TBM-
erived brain atrophic rates and demographic variables,
SF biomarkers, clinical and neuropsychological measures,
nown risk genes, imminent conversion to AD, and other
isk factors. These correlations were subsequently evaluated
y cumulative distribution functions (CDF) to determine if
hey were significant after controlling for multiple compar-
sons using conventional criteria, inside the whole brain or
ithin the temporal lobes. The CDFs were also used to rank

he strengths of correlations within each category, to find
ut which factors are most strongly associated with the rates
f structural brain atrophy. Second, the 3-dimensional map
as reduced to a single numerical score, representing the
verall atrophic rate for each individual within a region of
nterest ROI. Third, based on these numerical scores, a
ower analysis was used to estimate the patient recruitment
ize for a hypothetical clinical trial of a disease-modifying
rug, using structural imaging or other biomarkers as sur-
ogate measures of disease progression.

.7.1. General linear correlations and cumulative
istribution functions (CDF) computed to assess false
iscovery rates (FDRs)

At each voxel within the brain, correlations were as-
essed, using the general linear model, between atrophy
ates and: (1) demographic variables (age, sex, and educa-
ion); (2) baseline and 1-year changes in CSF biomarker
evels (A�, tau, p-tau, and the ratio of tau to A�); (3)
aseline and 1-year changes in clinical and behavioral mea-
ures: (ADAS-cog, MMSE, AVLT, LM, CDR-SB, and
unctional Assessment Questionnaire [FAQ]); (4) medical
istories of cardiovascular, endocrine-metabolic, and gas-
rointestinal disorders, as well as information on alcohol
buse, drug abuse, and smoking; (5) body mass index
BMI); (6) AD risk genes (ApoE4, and a newly discovered
andidate risk gene, GRIN2b; Stein et al., 2010). Correla-
ions were assessed within each diagnostic group indepen-
ently, and in the combined group (of all AD, MCI, and
TL subjects), where appropriate. Binary categorical (or

ndicator) variables were used to code sex (female sex as 0;
ale as 1), medical histories (no medical history as 0;

resent as 1), and conversion to AD (non-converters as 0;
onverters as 1). Risk genes were coded as 0, 1, and 2 for 0,
, and 2 risk alleles, respectively, to represent an additive
odel assuming an equal contribution of each risk allele to

rain atrophy. All other covariates were represented as con-

inuous variables. Multiple regressions allowed the fitting of

http://www.loni.ucla.edu/ADNI/Data
http://www.loni.ucla.edu/ADNI/Data
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number of predictor variables simultaneously. We first
xamined age and sex effects (independent variables) on
trophic rates (dependent variables), and age and sex were
tted as covariates to adjust the rest of the correlations for

hese effects.
CDF plots of the regression p values were used to de-

ermine the significance and compare the strengths of asso-
iation (effect sizes) for the various factors that correlated
ith atrophic rates, inside a predefined region-of-interest

e.g., the temporal lobes or whole brain). CDF plots are
ommonly used by false discovery rate methods to assign
verall significance values to statistical maps (Benjamini
nd Hochberg, 1995; Genovese et al. 2002; Storey, 2002). A
ignificant correlation is declared if the CDF intersects the
� 20x line (other than at the origin), i.e., critical p � 0, as

his shows that the volume of suprathreshold statistics is
ore than 20 times that expected under null-hypothesis

Chou et al., 2009b; Hua et al., 2008a, 2009; Morra et al.,
009b). The critical p value refers to the point at where CDF
lot intersects with the line y � 20x, and this represents the
ighest statistical threshold for which at most 5% false
ositives are expected in the map. This value is generally
igher for stronger effect sizes in the maps, but is not
efined if no effect is present (i.e., the false discovery rate
n the map cannot be controlled). CDFs may also be used to
ompare effect sizes for different clinical correlations: CDF
urves show increasingly strong statistical correlations in
ank order from bottom to top, in each graph.

.7.2. Numerical summaries of atrophy rates derived
rom a statistically-defined region-of-interest

A statistically-defined region of interest (stat-ROI),
ased on voxels with significant atrophic rates over time
p � 0.001) within a predefined anatomical ROI, was es-
ablished in a nonoverlapping training set of 20 AD patients
age at baseline: 74.8 � 6.3 years; 7 men and 13 women)
canned at baseline and at 1 year. The anatomical ROIs
ncluded the whole brain gray matter and temporal lobes,
wo of the best search regions giving the highest statistical
ower in tracking AD progress (Hua et al., 2010). This
rocedure is detailed in Chen et al. (2009), Hua et al. (2009,
010), and Ho et al. (2009). A numerical summary of the
trophic rate in the whole brain gray matter, or temporal
obe, was computed by taking the arithmetic mean of Jaco-
ian values within the corresponding stat-ROI (Ho et al.,
009; Hua et al., 2009, 2010), giving a single rate of atrophy
core for each individual.

.7.3. Power analysis and sample size estimates
A power analysis was defined by the ADNI Biostatistics

ore to estimate the sample size required to detect, with
0% power, a 25% reduction in the mean annual change, as
aptured by imaging, clinical, or CSF biomarker measures,
sing a 2-sided test and standard significance level (� �
.05) for a hypothetical 2-arm study (treatment vs. placebo).

he estimated minimum sample size for each arm was c
omputed with the formula below. Briefly, � denotes the
stimated annual change (average of the group) and �D

efers to the standard deviation of the rate of atrophy across
ubjects.

n �
2�̂D

2 �z1�� ⁄ 2 � zpower�2

�0.25�̂�2

Here z� is the value of the standard normal distribution
or which P[Z � z�] � � (Rosner, 1990). The sample size
equired to achieve 80% power was computed, denoted by
80. The 95% confidence interval for the n80 statistic was
omputed based on 10,000 bootstrapped resamplings, with a
ias-corrected and accelerated percentile method (Davison
nd Hinkley, 1997; Efron and Tibshirani, 1993).

. Results

.1. Age and sex effects in atrophy rates

The rates of atrophy (Jacobian values) at each location
nside the brain were tested for correlations with age and sex
n AD, MCI, and CTL groups independently, as well as in
he combined group (ALL). The CDF plots (Fig. 1a and b)
how that age and sex correlate with atrophic rates, espe-
ially in the MCI group, and when all subjects were com-
ined. There was no systematic age difference between the
diagnostic groups (mean age was 76.5, 76.0, and 77.0 for
D, MCI, and CTL respectively), so these effects are driven
y differences in age within the diagnostic groups, not
etween them. Comparing CDF curves of the same color —
or the whole brain versus temporal lobes — gives a clear
mpression of the power gained by restricting analyses to
egions that are known to change the most. For example, the
lack curves show that age and sex effects are detected with
reater effect sizes when focusing on the temporal lobes, as
he CDF curves have a steeper gradient at the origin. They
lso cross the reference line y � 20x at a higher point, which
eans that a higher threshold (critical p value or C.P.) can

e applied to the statistical maps while keeping the false
iscovery rate to 5% of the voxels shown.

The sign of the correlations with age — positive inside
issues and negative in the CSF — indicates faster brain
egeneration in younger MCI subjects (Fig. 1c), about 1%
ncrease in atrophic rates and 2% increase in ventricular
xpansion rates for every 10-year decrease in age; AD
atients showed a similar but lesser age effect. Healthy
ontrols showed a small but significant age effect in the
pposite direction: a few voxels in the CSF and at the
oundary of gray matter and CSF showed positive correla-
ions, i.e., younger age is associated with less ventricular
xpansion. Atrophic rates were faster in women than men
y about 1%–1.5% per year, signified by positive correla-
ions between the atrophic rates and sex (female sex was

oded arbitrarily as 0; male as 1; Fig. 1d). As expected, the
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egression coefficient maps, using thresholds derived within
he temporal lobes or across the entire brain, are generally
onsistent in their spatial distributions. However, a broader
rea reaches significance if restricting the search region to
he temporal lobes, as the critical p values are higher within
he temporal lobes than those from the whole brain (results
ot shown).

When we added education and BMI into this regres-
ion model, they did not show significant correlations in
ny group so were not pursued further as confounds. To
etter illustrate the age and sex differences in atrophic
ates, the MCI group was divided into 6 subgroups (in
ge brackets: 60 to �70, 70 to �80, and 80 to �90 years;
urther split by sex into female and male). Fig. 2 shows

ig. 1. Age and sex differences in atrophic rates are shown across the ent
umulative distribution function (CDF) plots for the effects on atrophic rat
trophy rates. Both effects were most prominent in the mild cognitive imp
he whole brain were reflected in the y axis to avoid clutter. CDF curves th
ge and sex effects throughout the whole brain showed inferior statistical
een by comparing CDF curves of the same color in (a) and (b). Regressi
he entire brain; colors show the signs of the regression coefficients. The ma
ge (2) is associated with faster tissue loss rates (2) and faster ventricula
ncrease in ventricular expansion rates, for every 10-year decrease in age,
n the CSF, respectively. Women (2) had faster brain degeneration (2) by
nly the values in regions demonstrating significant correlations, after FDR
mpairment; CTL, healthy elderly controls; ALL, all subjects including A
he age and sex effects in a straightforward fashion, as (
roup average maps. The rest of correlations tested in this
aper were all statistically adjusted for these effects of
ge and sex.

As a related question, one might also wonder if age and
ex differences were present in the baseline MRI measures.
n fact, there were significant age and sex differences in
aseline temporal lobe atrophy, within each group indepen-
ently and in the combined group.

.2. Correlations between atrophic rates and clinical
cognitive/behavioral) measures

Temporal lobe atrophy rates were correlated with base-
ine clinical measures (Fig. 3) and with their rates of decline

n and also in an analysis restricted to changes within the temporal lobes.
e (a) and sex (b) show the statistical significance of their correlations with
t (MCI) group, probably because it had the most subjects. CDF plots for
more steeply at the origin generally indicate greater effect sizes. Tests for
relative to similar tests for effects inside the temporal lobes. This can be
ficient maps are shown for the age (c) and sex (d) effects in MCI across
h effect (age, sex) is adjusted for the effect of the other covariate. Younger
sion (1). There is approximately a 1% increase in atrophic rates and 2%
n by positive correlations in the temporal lobes and negative correlations
%–1.5% per year relative to men. These correlation coefficient maps show
ion across the entire brain. AD, Alzheimer’s disease; MCI, mild cognitive
, and CTL; C.P., critical p value; n.s., not significant.
ire brai
es of ag
airmen
at rise
power
on coef
p of eac
r expan
as show
about 1
correct
Fig. 4). In AD and MCI, atrophic rates were most strongly
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orrelated with the ADAS-cog, LM-im, and AVLT-5 scores
t baseline (Fig. 3a and b). Baseline LM-del, AVLT-del,
AQ, and MMSE also showed significant correlations in
CI (Fig. 3b). Anatomical changes over time were also

ighly correlated with ongoing changes in LM-del, ADAS-
og, CDR-SB, in AD, and CDR-SB, FAQ, LM-im, ADAS-
og, LM-del, in MCI (Fig. 4). The rank order — from
ighest to lowest effect sizes — is shown for these corre-
ations, with baseline ADAS-cog showing the highest cor-
elations with future atrophic rates. The highest curves show
he covariates that are most strongly correlated with the
easured atrophic rate.
Similar but weaker effect sizes (lower CDF curves and

ritical p values) were obtained when expanding the search
egion to the entire brain, relative to restricting to the tem-
oral lobes, comparing curves of the same color on each
ide of the plot (Figs. 3 and 4). Using the whole brain ROI,
trophic rates were only significantly correlated with the
DAS-cog at baseline in AD, and baseline measures of
DAS-cog, AVLT-5, LM-del, LM-im, and MMSE in MCI

Fig. 3). Likewise, with the whole brain ROI, atrophic rates
ere only linked to LM-del decline over a year in AD, while

he effect sizes were substantially reduced in MCI (Fig. 4).
hese “butterfly plots” show that there is a clear boosting of
ower for detecting statistical effects on atrophy when fo-
using on the regions where greatest changes are expected

ig. 2. Average maps of atrophic rates in mild cognitive impairment (MCI)
age groups, 60–70 (n � 24), 70–80 (n � 59), and 80–90 years (n � 3

3), 70–80 (n � 102), and 80–90 years (n � 77). Faster atrophic rates occu
re clearly visible. A small number of MCI subjects (n � 6) fell outside of th
n the maps.
i.e., the temporal lobes). a
.3. Correlating atrophic rates with CSF biomarkers

Rates of brain atrophy were significantly correlated with
SF biomarker levels — A�, tau, p-tau, and tau/A� — at
aseline in the combined group of all subjects (blue CDF
urves in Fig. 5). These correlations did not reach statistical
ignificance within each diagnostic group independently,
xcept that the level of CSF A� showed weak but signifi-
ant correlations (critical p � 0.004 in the temporal lobes
nd 0.001 in the whole brain) in MCI (cyan CDF curves in
ig. 5). Also, there were no detectable correlations between
ates of tissue atrophy and the rates of change in the CSF
iomarkers within the individual groups, with the exception
f tau/A� in the whole brain in AD (critical p � 0.003). The
atio of tau to A� also showed some weak correlations with
trophic rates in the combined group (critical p � 0.0004 in
he temporal lobes and 0.001 in the whole brain). In the
ommon sample, clinical correlations were compared with
he results from CSF biomarkers. Baseline ADAS-cog and
DR-SB rates of decline were more strongly correlated
ith structural brain atrophy, as indicated by higher CDF

urves and higher critical p values, with significant corre-
ations also found in the separate diagnostic groups. Again,
he effect sizes are substantially boosted by focusing on a
emporal lobe region of interest, rather than including all the
oxels in the brain; this is clearly evident as the curves on
he right of each plot tend to rise more steeply at the original

ts, subdivided by age and sex. Female MCI subjects (top) are divided into
le MCI subjects (bottom) are divided into the age groups of 60–70 (n �
r blue) in younger subjects, and in women versus men; age and sex effects
ranges but were too few to form a separate sample so they are not included
subjec
7). Ma
r (darke
ese age
nd intersect the FDR reference line (y � 20x) at a higher
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ntersection point, whose x-value denotes the highest p
alue threshold that can be applied to the statistical maps
hile preserving the expected false discovery rate at the

onventional level of 5%.

.4. Temporal lobe atrophy rates linked to AD risk genes

Carriers of the �4 allele of the ApoE (apolipoprotein E)
ene, a commonly carried risk gene for late-onset AD
Roses and Saunders, 1994; Saunders et al., 1993), showed
aster atrophic rates in the temporal lobes overall. Associ-
tions were weak but significant within each diagnostic
roup individually only inside the temporal lobes, but
trong when all groups were combined (Fig. 6). The newly
iscovered risk allele (rs-10845840, which codes for
RIN2b, a glutamate receptor subunit; Stein et al., 2010)
as associated with atrophic rates in the combined group,
ut more weakly than ApoE (Fig. 6; higher curves denote
tronger effects). When ApoE4 was added to the statistical
odel that estimated the age and sex effects on the rates of

trophy, the sex effect turned out to be stronger (AD: critical
� 0.001; MCI: 0.02; CTL: not significant; ALL: 0.02) but

he age effect was slightly attenuated (AD: not significant;
CI: critical p � 0.007; CTL: 0.0008; ALL: 0.01) inside

he temporal lobes.
When expanding the search region to the whole brain,

he presence of the ApoE4 risk allele was no longer asso-

ig. 3. Whole brain and temporal lobe atrophic rates are correlated with basel
MCI) (b) groups. Significant correlations are marked with a critical p valu
cale-cognitive subscale (ADAS-cog), perhaps the most widely used cognitive
ates, in both AD and MCI groups. Again, the cumulative distribution functi
ompared with curves computed from all the voxels in the brain. This is visual
ey Auditory Verbal Learning Test; AVLT-5, AVLT conducted immediately a
DR-SB, Sum-of-boxes Clinical Dementia Rating; FAQ, Functional Assessme
elay; LM-im, LM test conducted immediately after information was read to
iated with higher atrophic rates in individual diagnostic d
roups, but the effect remained significant in the combined
roup.

.5. Faster temporal lobe atrophy in converters to AD
ithin 1 year

MCI subjects who converted to AD within a year (13%
f the total MCI group) showed faster atrophic rates than
on-converters, as seen in the contrast map and the signif-
cance map (Fig. 7). Converters, on average, displayed
%–3% faster atrophic rates than non-converters in the
emporal lobes. A similar test in the whole brain did not
each statistical significance (critical p � not significant).

.6. Correlations between atrophic rates and other risk
actors

We evaluated correlations between atrophic rates and
istories of cardiovascular, endocrine-metabolic, gastroin-
estinal disorders, alcohol abuse, drug abuse, and smoking.

medical history of drug abuse was weakly associated with
faster rate of tissue atrophy (critical p � 0.0001) in the AD
roup only, while the other factors had no detectable effect.

.7. Using covariates to boost power in clinical trials

Given the age and sex effects in atrophic rates, we broke
own the MCI groups into 6 age- and sex-divided sub-
roups. The n80s (sample size estimates) and 95% confi-

cal measures in Alzheimer’s disease (AD) (a) and mild cognitive impairment
er than 0.01 or 0.0001. Interestingly, the Alzheimer’s Disease Assessment
e in clinical trials, was most strongly correlated at baseline with future atrophic
F) curves for the temporal lobe data tend to rise more sharply at the origin,
nt when comparing curves of the same color on each side of the plot. AVLT,
of the 5 learning trials; AVLT-del, AVLT conducted after a 30-minute delay;

tionnaire; LM, Logical Memory; LM-del, LM test conducted after a 30-minute
ject; MMSE, Mini Mental State Examination; C.P., critical p value.
ine clini
e great
measur
ons (CD
ly evide
fter each
nt Ques
ence intervals are shown in Table 1. In this table, lower
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umbers are considered better as they imply that smaller
ample sizes would be required to detect a 25% change in
he rate of disease progress, measured by a specific AD
iomarker, in response to a potentially disease-modifying
rug. Younger men gave smaller n80s than older men, as
xpected from the age effects in MCI, where younger MCI
ubjects showed faster atrophy. For the sample size to be
maller, the atrophic rate may be higher and/or its standard
eviation smaller. Women aged 60–70 or 70–80 had
maller n80s than men at similar ages. This is also consis-
ent with the earlier finding that women had marginally
aster atrophic rates in MCI (by �0.5%–1.5% per year
ocally). In other words, trials focusing on younger subjects,
r with subanalyses focusing on women versus men, would
e better powered with these measures.

.8. n80 for the CSF biomarkers

To compare structural MRI versus CSF biomarkers, we
omputed the n80s based on 1-year changes in CSF biomar-
er levels. Given their poorer reproducibility than MRI, the
80s were much larger than those from neuroimaging mea-
ures (Table 2). Although clearly not their intended use, tens
f thousands to millions of subjects would need to be
ecruited to detect a potential drug effect using CSF biomar-
ers as surrogate markers measuring the rate of disease

ig. 4. Whole brain and temporal lobe atrophic rates correlated with rates
AD) (a) and mild cognitive impairment (MCI) (b) groups separately. Sign
linical Dementia Rating (CDR-SB) is the measure examined here whos
omparison of curves of the same color on either side of the y axis shows

steeper cumulative distribution functions [CDFs] than those that include a
VLT conducted immediately after each of the 5 learning trials; AVLT-
ementia Rating; FAQ, Functional Assessment Questionnaire; LM, Logica

onducted immediately after information was read to the subject; MMSE,
rogression. s
. Discussion

In one of the largest ADNI 1-year follow-up studies, we
pplied TBM to map the rates of atrophy throughout the
rain. Atrophic rates were shown to be correlated with some
emographic factors (age and sex), but not education or
MI (although BMI has been associated with baseline lev-
ls of atrophy in an independent sample of normal subjects
Raji, et al., 2010). Atrophic rates were also associated with
SF biomarker levels (A�, tau, p-tau, tau/A�), cognitive
erformance, behavioral assessments, and risk genes
ApoE, GRIN2b).

In this study, greatest atrophy was primarily localized
o the temporal lobes and several broadly distributed gray
nd white matter regions, and was evidenced by ventric-
lar expansions (Fig. 2). This pattern of localization of
trophy agrees with many prior reports using voxel-based
orphometry, tensor-based morphometry, and cortical

hickness maps (Baron et al., 2001; Chetelat et al., 2002;
risoni et al., 2009; Karas et al., 2004; Pievani et al.,
009; Scahill et al., 2002; Smith, 2002; Smith and Jobst,
996; Whitwell et al., 2007), based on cross-sectional
ata or smaller longitudinal studies.

This study was preceded by a smaller pilot study (20 AD,
0 MCI, 40 CTL) with a similar design, in which temporal
obe atrophy rates were correlated with clinical measures
nd biomarkers (Leow et al., 2009). The current study

al decline, for various different clinical measures, in Alzheimer’s disease
orrelations are marked with critical p � 0.01 or � 0.0001. Sum-of-boxes
e over time was the most highly correlated with atrophic rates in MCI.
general, the analyses of the temporal lobe voxels give higher effect sizes
oxels in the brain. AVLT, Rey Auditory Verbal Learning Test; AVLT-5,
LT conducted after a 30-minute delay; CDR-SB, Sum-of-boxes Clinical
ory; LM-del, LM test conducted after a 30-minute delay; LM-im, LM test

ental State Examination; C.P., critical p value.
of clinic
ificant c
e chang
that, in
ll the v

del, AV
l Mem
ubstantially extended the earlier study by expanding the
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earch region to the whole brain, and by investigating age
nd sex effects as well as correlations with many newly
dded biomarkers and risk factors in a sample size almost 7
imes larger. We confirmed earlier findings that temporal
obe atrophy rates were faster in MCI converters than non-
onverters, and were correlated with baseline CSF biomar-
er levels (A�, tau, p-tau, tau/A�) in the combined group,
ith baseline LM-del in MCI, and with changes of CDR-SB

nd LM-im in MCI; however, rate of atrophy, in the current
tudy, was not shown to correlate with baseline level of
-tau, change in MMSE, and change in AVLT-del in MCI.
he discrepancy might be due to the sample composition

although sample selection was unbiased) but is more likely
ue to the sample size difference, which is 7 times larger
ere. Additionally, we identified significant age and sex
ifferences in atrophic rates; temporal lobe atrophy rates
orrelated with A� in MCI, baseline ADAS-cog, LM-im,
nd AVLT-5 in AD, baseline ADAS-cog, AVLT-5, AVLT-
el, LM-im, FAQ, and MMSE in MCI, changes in LM-del,
DAS-cog, and CDR-SB in AD, and changes in FAQ,
DAS-cog, and LM-del in MCI. In the current study, we
ere also able to detect the associations between com-
on variants in the ApoE and GRIN2b genes and brain

trophic rates; we also explored the implications of drug
rial enrichment by performing subanalyses based on this

ig. 5. Correlations between atrophic rates and cerebrospinal fluid (CSF
espectively). Whole brain and temporal lobe atrophic rates were correlat
orrelations: beta-amyloid peptides (A�), tau/A�, phosphorylated tau prote
ild cognitive impairment (MCI; MCI), and Alzheimer’s disease (AD; AD)
ere weakly correlated with atrophic rates (critical p � 0.004 in the tempo

mount of change in tau/A� over 12 months was weakly linked to brain atro
ith the results from CSF biomarkers. In this common subsample, baselin
um-of-boxes Clinical Dementia Rating (CDR-SB) (labeled as CDR) rat

ndicated by higher CDF curves and critical p values compared with CS
easures of CSF biomarkers, were not significant (not shown in the grap
nformation. t
.1. Age and sex effects

.1.1. Age effects
The age effects on atrophic rates in our study are based

n comparing atrophic rates in individuals, which is not to
e confused with mapping disease acceleration or deceler-
tion within individual subjects scanned more than twice
Sluimer et al., 2009). A recent non-ADNI study of indi-
iduals with 3 or more serial MRI scans (46 amnestic MCI
ubjects who later converted to AD, 46 healthy controls, and
3 stable MCI subjects) found that the rates of atrophy do
end to accelerate as individuals progress from amnestic

CI to typical late-onset AD; and the rates of atrophy were
reater in younger than older MCI subjects (Jack et al.,
008c). Our study, in a much larger sample of 684 ADNI
ubjects (114 AD, 338 MCI, and 202 CTL), confirmed the
rend for faster degeneration in younger amnestic MCI sub-
ects versus older subjects. The most plausible explanation
s that younger MCI subjects have a more biologically
ggressive disease course than older subjects (Jack et al.,
008c). There is substantial clinical and neuroimaging evi-
ence that early-onset AD (onset before age 65 and typi-
ally in the 40s and 50s) generally represents a more ag-
ressive form of disease than late-onset AD (onset after age
5) (Frisoni et al., 2007). A second possibility is that
ounger MCI subjects may have a larger cognitive reserve

rker levels (biomarker and clinical labels are with and without borders,
biomarker levels in the following rank order, from strongest to weakest
u), and tau, in CSF at baseline, in the combined group of all control (ALL),
(blue cumulative distribution function [CDF] curves) (a). CSF A� levels

es and 0.001 in the whole brain) in the MCI group (cyan curves) (b). The
tes. Clinical correlations, computed in the common dataset, were compared
imer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) (a) and
ecline (b) are more strongly correlated with structural brain atrophy, as
arker correlations. All. other correlations, with baseline and longitudinal
, critical p value; n.s., not significant.
) bioma
ed with
ins (p-ta
subjects
ral lob
phic ra
e Alzhe
es of d
F biom
han older subjects; under this theory, young people may
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ave greater ability to compensate for the brain deficits
o that symptoms may not be evident until brain atrophy
as progressed to a greater degree, and is proceeding
aster (see, e.g., Mortimer et al., 2005; but see also
hristensen et al., 2007 for an opposing view). Finally,

ome very old subjects were assessed (80 –90 years of
ge), so one has to keep in mind the possibility of a
election bias. Very old people in the study might tend to
e more well (well enough to participate in a neuroim-
ging study requiring multiple follow-ups), and have
ower atrophic rates; even though when those same peo-
le were younger (long before ADNI) they may have had
ven slower atrophy rates. In other words, early mortality
ay prevent people from enrolling in ADNI if they die

arlier due to very fast atrophy, so the oldest subjects in
DNI, as a survivor effect, may have slower atrophic

ates for this reason. This attrition effect could explain
he paradoxical “adverse” effect of young age in a cross-
ectional study (faster atrophy in younger people), even
hen people’s atrophic rates may speed up as the disease
rogresses (within an individual); this has been demon-
trated in early-onset AD (Chan et al., 2003; Ridha et al.,
006) and late-onset AD (Jack et al., 2008c). In a normal

ig. 6. Genetic influences on brain atrophy. The presence of the ApoE4
marked by solid lines) and the GRIN2b risk gene (also known as single
ucleotide polymorphism [SNP] rs-10845840; dotted lines; Stein et al.,
010) were associated with faster rates of atrophy in the temporal lobes,
ith ApoE4 showing a greater statistical influence than GRIN2b, indicated
y the rank order of the cumulative distribution functions (CDFs) and by
he false discovery rate (FDR) critical p values. When expanding the search
egion to the whole brain, the presence of the ApoE4 risk allele was no
onger associated with higher atrophic rates in individual diagnostic
roups, but the effect remained significant in the combined group. Risk
enes were coded as 0, 1, and 2 for 0, 1 risk allele, and 2 adverse alleles,
espectively; association tests assumed an additive model of gene action.
ritical p values are shown for each test. AD, Alzheimer’s disease; MCI,
ild cognitive impairment; CTL, healthy elderly controls; ALL, all sub-

ects including AD, MCI, and CTL; n.s., not significant.
ging study, Scahill et al. (2003) found evidence that r
trophic rates accelerated with increasing age; our study
lso showed a small age effect in the control group, with
similar direction of correlation.

.1.2. Sex effects
We provided the first structural MRI evidence, to our

nowledge, of sexual dimorphism in atrophic rates, al-
hough several studies have found worse cognitive and
ehavioral deficits in women versus men with AD. Most
arly MRI studies failed to detect a sex difference in atro-
hic rates, but were limited by small sample sizes and
imited statistical power. Sex differences in brain structure
re found naturally and well studied (see, e.g., Brun et al.,
009 for a TBM study) but sex differences in the rates of
rain change over time are less commonly reported, except
n studies of childhood brain development where they occur
round puberty (Giedd et al., 1999). Why atrophic rate was
aster in women is not clear. Numerous demographic studies
rovide evidence for a “male-female health-survival para-
ox”. According to this, older men are generally in better
ealth and are less limited in their daily activities than
omen of the same age, but mortality rates are higher in
en than women at all ages (Christensen, 2008). Genetic

ariation in the sex chromosomes may contribute to sex
ifferences in the incidence of some comorbid disorders.
en may have earlier and higher incidence of hypertension

nd cardiovascular diseases (high mortality risk diseases)
hile women suffer more from migraine, arthritis, and mus-

uloskeletal diseases (low mortality risk diseases) (Macin-
yre et al., 1996); this may be related to the cohort effect
iscussed earlier. Sex hormones may also influence the
xpression of genes that affect lifespan and longevity
Tower, 2006; Tower and Arbeitman, 2009).

ig. 7. Mild cognitive impairment (MCI) converters showed faster rates of
rain atrophy in temporal lobes than MCI non-converters. The mean difference
ap shows regions where atrophy rates are faster in converters than non-

onverters (left panel; blue colors: 3% faster). Red colors show regions where
entricular expansion is faster in converters than nonconverters. The right
anel shows the false discovery rate (FDR) corrected p maps displaying

egions with significant difference overall (critical p � 0.002).
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.1.3. Baseline differences
We identified significant age and sex differences in base-

ine measures of brain atrophy, within each group indepen-
ently and in the combined group. These baseline effects
ay reflect a combination of (1) the cumulative influence of

ge and sex throughout life, and (2) naturally occurring sex
ifferences in brain structure, as different structures tend to
ccupy different proportions of the total brain volume in
en versus women (i.e., allometry; Brun et al., 2009).
ower education levels are also linked to a higher risk of
eveloping AD and faster rate of progression when com-
ared with more highly educated people (Ngandu et al.,
007; Scarmeas et al., 2006). Higher BMI, an index of
besity, is associated with greater brain atrophy in elderly
ormal subjects (Raji, et al., 2010). We therefore added
ducation and BMI to the statistical models of age and sex,
ut the conclusions remained the same even after adjusting
or these additional factors. BMI was associated with base-
ine atrophy but not with atrophic rates.

.2. Structural MRI, clinical, and CSF biomarkers

Different biomarkers provide complementary informa-
ion at different stages of AD (Jack et al., 2008b; Jagust et
l., 2009). In particular, structural MRI measures tend to
orrelate better with cognitive test scores than with CSF
iomarker levels. This may be because (1) CSF biomarker
hanges tend to precede the gross anatomical changes on
RI, and (2) because CSF measures are primarily intended

o help with diagnosis rather than resolve subtle changes
ver time within diagnostic categories. We note that CSF
easures were not used to assist diagnosis in the ADNI

tudy. However, at least part of the difference in statistical
ower is due to the different sample sizes of subjects who
ad available cognitive measures versus CSF biomarker
easures. We tested a common set of subjects who had both

ognitive and CSF measures (Fig. 5). By reducing the full
ample (n � 684 at baseline and n � 660 with 1-year
ollow-up) to the common set (n � 363 at baseline and n �
51 with 1-year follow-up), the clinical correlations all
ecame weaker; however, their statistical effects remained
igher than those of CSF biomarkers — for example, there

able 1
he n80s for groups of MCI subjects subdivided by age and sex, and in

he combined group with all MCI subjects included

60–70 years 70–80 years 80–90 years

omen 46 [26,102] 55 [40, 88] 117 [70,233]
en 68 [47,108] 96 [69,147] 117 [83,182]
ombined 90 [75, 110]

ub-analyses focusing on women or younger subjects led to smaller sample
ize estimates (or, equivalently, greater power to detect a disease slowing
ffect in a given sample size). The numerical summaries, used for com-
uting n80s, were generated within a statistically predefined ROI inside the
ray matter of the entire brain, providing an overall estimate of the gray
atter atrophic rate for each individual.
ere significant correlations even within the separate diag- i
ostic groups, while only a couple of CSF biomarkers (base-
ine level of A� in MCI and rate of tau/A� decline in AD)
urvived statistical testing within the separate diagnostic
roups.

.3. AD risk genes

ApoE4 is a well-known AD risk gene (Corder et al.,
993, Roses, 1996; Roses and Saunders, 1994, Roses et al.,
995, Saunders et al., 1993), and in our earlier cross-sec-
ional study of 676 ADNI subjects, ApoE2 (the “protective”
llele) was associated with reduced CSF volume (an index
f lesser brain atrophy) and ApoE4 was associated with
reater temporal lobe atrophy (Hua et al., 2008b). In this
ongitudinal analysis, ApoE4 and GRIN2b were linked to
aster rates of temporal lobe atrophy, in a dose-dependent
ashion. GRIN2b is a newly identified risk SNP that predicts
emporal lobe volumes in ADNI at baseline (Stein et al.,
010), but its association with AD is not as strong as ApoE,
o requires replication. As well as its use for measuring
isease progression, structural MRI measures can also be
sed to identify genes that influence brain volumes in ge-
ome-wide association studies (GWAS) (Joyner et al.,
009; Potkin et al., 2009; Stein et al., 2010).

.4. Statistical analyses

We applied stratified analyses and ran separate regres-
ions independently in each diagnostic group, to ensure that
he observed statistical effects were not driven by diagnosis.
lternatively, the analysis could be carried out by pooling

ll subjects, by applying indicator variables to encode diag-
ostic groups and interaction terms to quantify inter-group
ifferences on the main effects. However, this increases the
omputational burden, and each analysis already involves
2,000,000 correlations. Because of the very large number

f possible interactions, and the likelihood of not being able
o fit them all stably, we did not test for interactions between
iagnostic groups and predictor variables. We also did not
ttempt to quantify inter-group differences in the main ef-

able 2
he sample sizes (n80s) for AD and MCI using CSF biomarkers versus
RI measures of whole-brain gray matter atrophy and temporal

obe atrophy

AD (n � 50) MCI (n � 122)

SF biomarkers
A�1-42 5,721,531 75,816
t-tau 81,292 19,098
t-tau/A�1-42 66,293 533,091
RI measures
Gray matter atrophy 43 86
Temporal lobe atrophy 43 82

he numerical summaries of MRI imaging measures were generated within
statistically predefined ROI with the gray matter of the entire brain and

n the temporal lobes, providing a measure of the overall gray matter
trophic rate and temporal lobe atrophic rates, respectively. AD, Alzhei-
er’s disease; MCI, mild cognitive impairment; MRI, magnetic resonance
maging; CSF, cerebrospinal fluid.
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ects, which requires a second order analysis and has still
reater statistical power requirements. Instead, we treated
he 3 diagnostic groups independently, merely to ensure that
he observed statistical effects were not driven by diagnosis.

In all analyses, we first ran correlations in the separate
linical groups, and then we ran another correlation in the
ombined group, where appropriate. This is the most ag-
ostic approach as it allows the correlations to differ, in
rinciple, in the different diagnostic categories, avoiding the
isk that the detected correlations may be shadowing diag-
osis. We did not perform correlations with clinical mea-
ures in the combined group. As clinical measures are used
o determine diagnosis, a correlation in the combined group
ill be significant by construction. The CSF biomarkers,
owever, were not used to define diagnosis so it is reason-
ble to correlate them with levels of atrophy across the
ombined group. Even so, correlations detected in the com-
ined group may not even apply within some of the groups,
ither indicating a lack of association or, more likely, lim-
ted power to track subtle disease progression within the
educed samples of subjects in individual diagnostic groups.
his effect likely explains the lack of correlations with CSF
iomarkers within groups. The correlations between CSF
iomarkers and MRI changes tend to break down as the
isease progresses, as changes in CSF biomarker levels may
rimarily occur prior to the MRI changes. A similar pattern
as been noted in studies of amyloid PET (Braskie et al.,
008), where cortical thinning may not correlate with amy-
oid deposition if the 2 processes occur or saturate at dif-
erent times. In a recent study using serial imaging, the rate
f neurodegeneration was shown to associate with clinical
ymptoms but dissociate from amyloid deposition measured
y [11]C Pittsburgh compound B (PIB) positron emission
omography (Jack et al., 2009).

We used categorical variables or indicator variables to
ncode binary predictors, such as sex, medical history, and
onversion to AD, each of these variables only has 2 distinct
lasses, i.e., male versus female, those with or without a
edical history, and converters versus non-converters. If a

imple linear regression only includes a 2-class categorical
ariable as the independent variable, the regression acts as
2-sample Student t test. An added benefit of using regres-

ions over t tests is that regression allowed us to control for
ffects of several covariates simultaneously. For example,
y fitting both age and sex in the regression model, the sex
ffect was controlled for when assessing any age effects on
trophic rates.

.5. Choices of search region

The results in the whole brain ROI are generally consis-
ent with those derived from the temporal lobes, but are
eaker in statistical power. This is expected as brain de-
eneration is not uniformly distributed across the brain, nor
oes it progress uniformly. The volume loss pattern from

ild to moderate AD spreads over time from temporal and e
imbic cortices into frontal and occipital brain regions,
argely sparing primary sensorimotor cortices (Braak and
raak, 1991; Thompson et al., 2003). One advantage of

ocusing on the temporal lobes is the improved statistical
ower by restricting the search region to the area most
ffected in MCI and early AD. In examining genes influ-
ncing brain atrophy (Fig. 6) and comparing differences
etween groups of MCI converters and non-converters (Fig.
), the statistical effects were only significant in the tempo-
al lobes —which makes sense as these are the regions with
reatest pathologic burden in early AD. The inclusion of
any voxels with much slower atrophic rates and with

ower effect sizes tends to inflate the number of voxels
ssessed to the point where no FDR-controlling threshold
an be found. Nevertheless, it is also important to examine
he results across the entire brain to better understand fac-
ors influencing brain atrophy in normal aging and AD.

.6. Conclusions and limitations

Our study is 1 of many that support the use of structural
RI for providing valid surrogate markers in clinical drug

rials. MRI is also useful for detecting factors that affect
tructural changes in anatomical regions involved in AD.
SF biomarkers, despite their value for early diagnosis,
ight not be so effective for tracking disease progression

ver time or even for evaluating therapeutic interventions in
CI and AD. For example, their n80s — measures of

ample size requirements to detect a fixed percent reduction
n the rate of progression — are 1000–10,000 times larger
han those from structural MRI (Table 2).

TBM-derived maps of atrophic rates, coupled with
oxel-based statistics, offer an easy-to-implement process
o investigate factors that exert negative or positive influ-
nces on aging and AD. Full 3-dimensional maps are used
n these correlations, as opposed to only 1 biomarker mea-
ure per individual. This type of map-based method may
ffer more information and spatial detail on the profile of
ffects, and may offer better statistical power if effect sizes
re not constant across the brain.

Each AD biomarker, derived from structural MRI, clin-
cal, or CSF measures, can be used independently to eval-
ate drug treatment effects, providing a surrogate outcome
easure to track the rate of disease progress. As a result of

sing different biomarkers, the sample size estimates (n80)
hould be interpreted with care. For example, a 25% reduc-
ion in the atrophic rate (measured by MRI) may have a
ifferent functional significance for a patient than a 25%
eduction in the rate of decline for clinical or cognitive test
cores; similarly, it may also have a different biological
ignificance than a 25% reduction in the rate of change in
SF biomarkers. For example, there may be important and

elevant biological events that do not have an immediate
maging correlate. Future efforts will focus on combining
ultiple biomarkers that measure different aspects of dis-
ase progress to reduce the sample size even further.
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This study has some limitations. The age and sex effects
n atrophic rates, which were still significant here after
ontrolling for education, BMI, and ApoE4, need to be
eplicated in future independent studies. A more complete
ataset from a large number of subjects with MRI, PIB-
ET, [18F] fluorodeoxyglucose (FDG)-PET, diffusion ten-
or imaging (DTI), resting-state functional MRI, and arterial
pin labeling is now being collected to explore the comple-
entary value of each of these neuroimaging markers. Fu-

ure longitudinal ADNI studies will make use of more than
serial scans, allowing acceleration hypotheses regarding

ge effects to be tested in the same subjects. More advanced
tatistical designs, such as random effects or mixed effects
odels, may then be used to estimate intra-subject variance

nd group effects with repeated measures (Fitzmaurice et
l., 2004; Frost et al., 2004; Schuff et al., 2009).
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